

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

Customer:	The Hemp Collect
Product identity:	Live D9 Gummy- Sour Apple- 20mg
Client/Metrc ID:	3008RC-092723
Laboratory ID:	23-012170-0001

Summary

Analyte	Result	Limits	Units	Status	THC-Total per Serving Size 18.1 mg/7g
CBD-A	0.0290		%		
CBG	0.0101		%		+
∆9-THC	0.259		%		CBD-Total per Serving Size 1.78 mg/7g
Analyte per 7g	Result	Limits	Units	Status	(Reported in milligrams per serving)
CBD-A per 7g	2.03		mg/7g		
CBG per 7g	0.707		mg/7g		
∆9-THC per 7g	18.1		mg/7g		

_ _ _ _ _ _ _ _ _ _ _ _

Less than LOQ for all analytes.

Microbiology:

Less than LOQ for all analytes.

_ _ _ _ _ _ _ _

Page 1 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

The Hemp Collect 825 NW 16th Ave Portland Oregon 97209

3008RC-092723

23-012170-0001

No 18.1 °C

client

7 g

Customer:

Product identity:

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by: Serving Size #1:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

THE HEMP

COLLECT

Sample Results

Potency	Method: J AOAC 2015	/98-6 (mod) ^þ	Units %	Batch: 2311861	Analyze: 10/13/23 8:39:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBD	< LOQ		%	0.00315	
CBD-A	0.0290		%	0.00315	
CBD-Total	0.0254		%	0.00591	
CBG	0.0101		%	0.00315	
CBG-A	< LOQ		%	0.00315	
CBG-Total	0.0101		%	0.00588	
CBN	< LOQ		%	0.00315	
$\Delta 10$ -THC-9R	< LOQ		%	0.00315	
$\Delta 10$ -THC-9S	< LOQ		%	0.00315	
$\Delta 10$ -THC-Total	< LOQ		%	0.00630	
∆8-THC	< LOQ		%	0.00315	
∆9-THC	0.259		%	0.00315	
THC-A	< LOQ		%	0.00315	
THC-Total	0.259		%	0.00591	
Total Cannabinoids	0.298		%		

Potency per 7g	Method: J AOAC 2015 \	/98-6 (mod)¤	Units mg/se Ba	atch: 2311861	Analyze: 10/13/23 8:39:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBD per 7g	< LOQ		mg/7g	0.221	
CBD-A per 7g	2.03		mg/7g	0.221	
CBD-Total per 7g	1.78		mg/7g	0.414	
CBG per 7g	0.707		mg/7g	0.221	
CBG-A per 7g	< LOQ		mg/7g	0.221	
CBG-Total per 7g	0.707		mg/7g	0.412	
CBN per 7g	< LOQ		mg/7g	0.221	
∆10-THC-9R per 7g	< LOQ		mg/7g	0.221	
$\Delta 10$ -THC-9S per 7g	< LOQ		mg/7g	0.221	
$\Delta 10$ -THC-Total per 7g	< LOQ		mg/7g	0.441	
∆8-THC per 7g	< LOQ		mg/7g	0.221	
∆9-THC per 7g	18.1		mg/7g	0.221	

www.columbialaboratories.com

Page 2 of 8

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Testing in accordance with: OAR 333-007-0430

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

Potency per 7g	Method: J AOAC 2015 V9	8-6 (mod) ^þ	Units mg/se Ba	tch: 2311861	Analyze: 10/13/23 8:39:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
THC-A per 7g	< LOQ		mg/7g	0.221	
THC-Total per 7g	18.1		mg/7g	0.414	

Microbiology							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Aerobic Plate Count	< LOQ		cfu/g	10	2311804	10/15/23 AOAC 990.12 (Petrifilm) ^b	
E.coli	< LOQ		cfu/g	10	2311802	10/15/23 AOAC 991.14 (Petrifilm) ^p	
Total Coliforms	< LOQ		cfu/g	10	2311802	10/15/23 AOAC 991.14 (Petrifilm) ^p	
Staphylococcus aureus	< LOQ		cfu/g	10	2311806	10/14/23 AOAC 2003.07	
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2311803	10/15/23 AOAC 2014.05 (RAPID) ^b	
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2311803	10/15/23 AOAC 2014.05 (RAPID) ^b	
Listeria spp.	Negative		/g		2311810	10/14/23 AOAC 2019.10	
Salmonella spp. by PCR [*]	Negative		/g		2311808	10/14/23 AOAC 2020.02b	
EHEC including STEC [*]	Negative		/g		2311809	10/14/23 AOAC RI 121806 ^b	

Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
< LOQ	0.200	mg/kg	0.0180	2311932	10/17/23 AOAC 2013.06 (mod.) ^b	pass
< LOQ	0.200	mg/kg	0.0180	2311932	10/17/23 AOAC 2013.06 (mod.) ^b	pass
< LOQ	0.500	mg/kg	0.0180	2311932	10/17/23 AOAC 2013.06 (mod.) ^b	pass
< LOQ	0.100	mg/kg	0.00901	12311932	10/17/23 AOAC 2013.06 (mod.) ^b	pass
	< LOQ < LOQ < LOQ	< LOQ 0.200 < LOQ 0.200 < LOQ 0.500	 < LOQ < LOQ < LOQ < 0.200 < mg/kg < LOQ < 0.500 < mg/kg 	 < LOQ 0.200 mg/kg 0.0180 < LOQ 0.200 mg/kg 0.0180 < LOQ 0.500 mg/kg 0.0180 	 < LOQ 0.200 mg/kg 0.0180 2311932 < LOQ 0.200 mg/kg 0.0180 2311932 < LOQ 0.500 mg/kg 0.0180 2311932 	 < LOQ 0.200 mg/kg 0.0180 2311932 10/17/23 AOAC 2013.06 (mod.)^b < LOQ 0.200 mg/kg 0.0180 2311932 10/17/23 AOAC 2013.06 (mod.)^b < LOQ 0.500 mg/kg 0.0180 2311932 10/17/23 AOAC 2013.06 (mod.)^b

Mycotoxins							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Aflatoxin B2 [*]	< LOQ		µg/kg	5.00	2311938	10/18/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Aflatoxin B1 [¥]	< LOQ		µg/kg	5.00	2311938	10/18/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Aflatoxin G1 [*]	< LOQ		µg/kg	5.00	2311938	10/18/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Aflatoxin G2 [*]	< LOQ		µg/kg	5.00	2311938	10/18/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Ochratoxin A [¥]	< LOQ	20.0	µg/kg	5.00	2311938	10/18/23 AOAC 2007.01 & EN 15662 (mod) ^b	pass
Total Aflatoxins [¥]	0.000	20.0	µg/kg	20.0		10/19/23 AOAC 2007.01 & EN 15662 (mod) ^b	pass

 Page 3 of 8

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0430
 OAR 333-007-0430

 Report Number:
 23-012170/D002.R000

 Report Date:
 10/19/2023

 ORELAP#:
 OR100028

 Purchase Order:
 Received:

 10/12/23 10:34

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

= ISO/IEC 17025:2017 accredited method.
 * = TNI accredited analyte.

Units of Measure

cfu/g = Colony forming units per gram g = g µg/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) mg/7g = Milligram per 7g /g = Per gram % = Percentage of sample % wt = µg/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 4 of 8

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

Revision: 4 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

			Lai	orator	y Quality Co	ntrol Res	ults			
J AOAC 2015 V98-	6			B	atch ID: 2	231186	51			
Laboratory Contro	ol Sample									
Analyte	LCS	Result	Spike	Units	% Rec	1	imits.		Evaluation	Notes
CBDVA	2	0.0325	0.0333	%	97.6	80.0	-	120	Acceptable	
CBDV	2	0.0318	0.0324	%	98.3	80.0	-	120	Acceptable	
CBE	2	0.0347	0.0355	%	97.8	80.0	-	120	Acceptable	
CBDA	1	0.0306	0.0322	%	95.0	90.0	-	110	Acceptable	
CBGA	1	0.0306	0.0329	%	92.9	80.0	-	120	Acceptable	
CBG	1	0.0349	0.0368	%	94.9	80.0	-	120	Acceptable	
CBD	1	0.0307	0.0313	%	98.0	90.0	-	110	Acceptable	
THCV	2	0.0302	0.0304	%	99.4	80.0	-	120	Acceptable	
d8THCV	2	0.0291	0.0305	%	95.5	80.0	-	120	Acceptable	
THCVA	2	0.0320	0.0327	%	97.9	80.0	-	120	Acceptable	
CBN	1	0.0305	0.0329	%	92.7	80.0	-	120	Acceptable	
exo-THC	2	0.0312	0.0327	%	95.6	80.0	-	120	Acceptable	
d9THC	1	0.0365	0.0365	%	100.0	90.0	-	110	Acceptable	
d8THC	1	0.0309	0.0340	%	90.8	90.0	-	110	Acceptable	
9S-d10THC	1	0.0322	0.0337	%	95.6	80.0	-	120	Acceptable	
CBL	2	0.0343	0.0337	%	102	80.0	-	120	Acceptable	
9R-d10THC	1	0.0304	0.0336	%	90.4	80.0	-	120	Acceptable	
CBC	2	0.0323	0.0338	%	95.3	80.0	-	120	Acceptable	
THCA	1	0.0315	0.0337	%	93.4	90.0	-	110	Acceptable	
CBCA	2	0.0325	0.0333	%	97.6	80.0	-	120	Acceptable	
CBLA	2	0.0334	0.0349	%	95.8	80.0	-	120	Acceptable	
d9THCP	2	0.0332	0.0333	%	99.7	80.0	-	120	Acceptable	
CBT	2	0.0305	0.0322	%	94.6	80.0	-	120	Acceptable	
Method Blank										
Analyte		esult	LOQ		Units		imits.		Evaluation	Notes
CBDVA		LOQ	0.00328		%		0.0032		Acceptable	
CBDV		LOQ	0.00328		%		0.0032		Acceptable	
CBE		LOQ	0.00328		%		0.0032	-	Acceptable	
CBDA		LOQ	0.00328		%		0.0032		Acceptable	
CBGA		LOQ	0.00328		%		0.0032		Acceptable	
CBG		LOQ	0.00328		%		0.0032	-	Acceptable	
CBD		loq	0.00328		%		0.0032		Acceptable	
THCV		LOQ	0.00328		%		0.0032		Acceptable	
d8THCV		LOQ	0.00328		%		0.0032		Acceptable	
THCVA		LOQ	0.00328		%		0.0032	-	Acceptable	
CBN		LOQ	0.00328		%		0.0032		Acceptable	
exo-THC		LOQ	0.00328		%		0.0032	-	Acceptable	
d9THC		LOQ	0.00328		%		0.0032		Acceptable	
d8THC		LOQ	0.00328		%		0.0032	-	Acceptable	
9S-d10THC		LOQ	0.00328		%		0.0032		Acceptable	
CBL		LOQ	0.00328		%		0.0032		Acceptable	
9R-d10THC		LOQ	0.00328		%		0.0032		Acceptable	
CBC		LOQ	0.00328		%		0.0032	-	Acceptable	
THCA		LOQ	0.00328		%		0.0032		Acceptable	
CBCA		LOQ	0.00328		%		0.0032		Acceptable	
		LOQ	0.00328	1	%	< (0.0032	8	Acceptable	
CBLA										
CBLA d9THCP CBT	<	LOQ	0.00328		%	< (0.0032		Acceptable Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Units of Measure: % - Percent

Page 5 of 8 www.columbialaboratories.com Page 5 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

Revision: 4 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

			Lai	oratory	Quality Con	trol Results				
J AOAC 2015 V98-6					Ba	tch ID: 2311861				
Sample Duplicate	Sample ID: 23-004463-0003									
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes		
CBDVA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBDV	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBE	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBDA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBGA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBG	0.0214	0.0211	0.00322	%	1.53	< 20	Acceptable			
CBD	0.706	0.696	0.00322	%	1.38	< 20	Acceptable			
THCV	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
d8THCV	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
THCVA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBN	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
exo-THC	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
d9THC	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
d8THC	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
9S-d10THC	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBL	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
9R-d10THC	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBC	0.00625	0.00614	0.00322	%	1.83	< 20	Acceptable			
THCA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBCA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBLA	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
d9THCP	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			
CBT	<loq< td=""><td><loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.00322</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.00322	%	NA	< 20	Acceptable			

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Page 6 of 8
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Tester exception of the samples are received by the laboratory of the samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	23-012170/D002.R000
Report Date:	10/19/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	10/12/23 10:34

 Www.columbialaboratories.com
 Page 7 of 8

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390
 OAR 333-007-0430

23-012170/D002.R000 **Report Number: Report Date:** 10/19/2023 **ORELAP#:** OR100028 **Purchase Order:** 10/12/23 10:34 **Received:**

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

 www.columbialaboratories.com
 Page 8 of 8

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0430
 OAR 333-007-0430

KCA Laboratories
 232 North Plaza Drive
 Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 6

Naturally Derived Hemp Delta 9 Distillate

Client Sample ID: SA-230901-26627 The Hemp Collect Batch: 09DST226 Received: 09/06/2023 431 NW Flanders St., Ste. 202 Completed: 09/12/2023 Type: In-Process Material Matrix: Concentrate - Distillate Portland, OR 97209 Unit Mass (g): USA Summary Test **Date Tested** Status 09/12/2023 Cannabinoids Tested 09/06/2023 Foreign Matter Tested Heavy Metals 09/08/2023 Tested Microbials 09/08/2023 Tested 09/11/2023 Mycotoxins Tested 09/11/2023 Pesticides Tested 09/11/2023 **Residual Solvents** Tested 82.7 % 89.4% Not Tested Not Detected 82.7 % Yes Total ∆9-THC Δ9-THC **Total Cannabinoids Moisture Content** Foreign Matter Internal Standard Normalization Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS LOD Result LOO Result Analyte (%) (%) (%) (mg/g)CBC 0.0284 1.40 14.0 0.0095 CBCA 0.0181 0.0543 ND ND

CBCA	0.0181	0.0543	ND	ND
CBCV	0.006	0.018	ND	ND
CBD	0.0081	0.0242	0.280	2.80
CBDA	0.0043	0.013	ND	ND
CBDV	0.0061	0.0182	ND	ND
CBDVA	0.0021	0.0063	ND	ND
CBG	0.0057	0.0172	3.46	34.6
CBGA	0.0049	0.0147	ND	ND
CBL	0.0112	0.0335	0.126	1.26
CBLA	0.0124	0.0371	ND	ND
CBN	0.0056	0.0169	0.816	8.16
CBNA	0.006	0.0181	ND	ND
CBT	0.018	0.054	0.132	1.32
Δ8-THC	0.0104	0.0312	ND	ND
Δ9-THC	0.0076	0.0227	82.7	827
Δ9-ΤΗϹΑ	0.0084	0.0251	ND	ND
Δ9-THCV	0.0069	0.0206	0.467	4.67
Δ9-THCVA	0.0062	0.0186	ND	ND
Total ∆9-THC			82.7	827
Total			89.4	894
lotal			89.4	894

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 09/12/2023

Tested By: Nicholas Howard

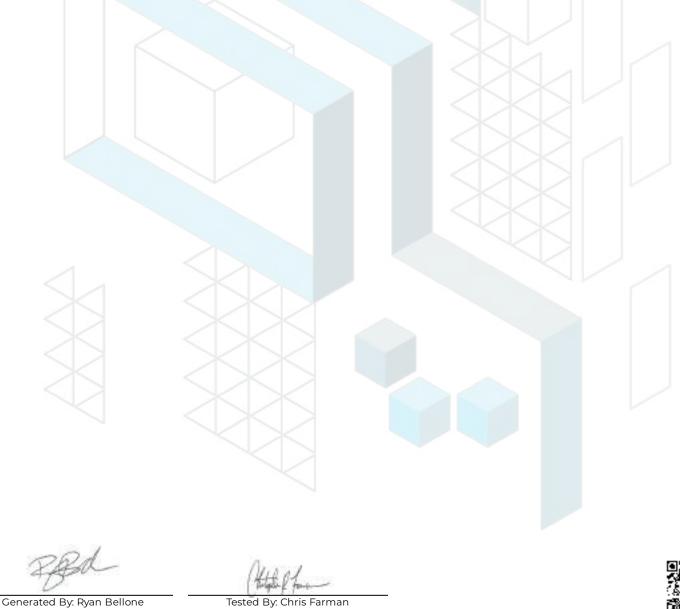
ested By: Nicholas Howarc Scientist Date: 09/12/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 6


Naturally Derived Hemp Delta 9 Distillate

kca

CCO

		eceived: 09/06/2023 mpleted: 09/12/2023	Client The Hemp Collect 431 NW Flanders St., Ste. 202 Portland, OR 97209 USA
Heavy Metals b		\bigcirc	
Heavy Metals b Analyte	y ICP-MS	LOQ (ppb)	Result (ppb)
Analyte		LOQ (ppb) 20	Result (ppb)
Analyte Arsenic			*** *
		20	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Date: 09/12/2023 Date: 09/08/2023
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

Scientist

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 6

Naturally Derived Hemp Delta 9 Distillate

Sample ID: SA-230901-26627 Batch: 09DST226 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):

Received: 09/06/2023 Completed: 09/12/2023 Client The Hemp Collect 431 NW Flanders St., Ste. 202 Portland, OR 97209 USA

Pesticides by LC-MS/MS

Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
	(ppb)	(ppb)	(ppb)		(ppb)	(ppb)	(ppb)
Acephate	30	100	ND	Hexythiazox	30	100	ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Aldicarb	30	100	ND	Imidacloprid	30	100	ND
Azoxystrobin	30	100	ND	Kresoxim methyl	30	100	ND
Bifenazate	30	100	ND	Malathion	30	100	ND
Bifenthrin	30	100	428	Metalaxyl	30	100	ND
Boscalid	30	100	ND	Methiocarb	30	100	ND
Carbaryl	30	100	ND	Methomyl	30	100	ND
Carbofuran	30	100	ND	Mevinphos	30	100	ND
Chloranthraniliprole	30	100	ND	Myclobutanil	30	100	ND
Chlorfenapyr	30	100	ND	Naled	30	100	ND
Chlorpyrifos	30	100	ND	Oxamyl	30	100	ND
Clofentezine	30	100	ND	Paclobutrazol	30	100	ND
Coumaphos	30	100	ND	Permethrin	30	100	ND
Daminozide	30	100	ND	Phosmet	30	100	ND
Diazinon	30	100	ND	Piperonyl Butoxide	30	100	ND
Dichlorvos	30	100	ND	Prallethrin	30	100	ND
Dimethoate	30	100	ND	Propiconazole	30	100	<loq< td=""></loq<>
Dimethomorph	30	100	ND	Propoxur	30	100	ND
Ethoprophos	30	100	ND	Pyrethrins	30	100	ND
Etofenprox	30	100	ND	Pyridaben	30	100	ND
Etoxazole	30	100	ND	Spinetoram	30	100	ND
Fenhexamid	30	100	ND	Spinosad	30	100	ND
Fenoxycarb	30	100	ND	Spiromesifen	30	100	ND
Fenpyroximate	30	100	ND	Spirotetramat	30	100	ND
Fipronil	30	100	ND	Spiroxamine	30	100	ND
Flonicamid	30	100	ND	Tebuconazole	30	100	ND
Fludioxonil	30	100	ND	Thiacloprid	30	100	ND
				Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 09/12/2023

WINS Tested By: Jasper van Heemst **Principal Scientist**

Date: 09/12/2023 Date: 09/11/2023
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 6

Naturally Derived Hemp Delta 9 Distillate

kca

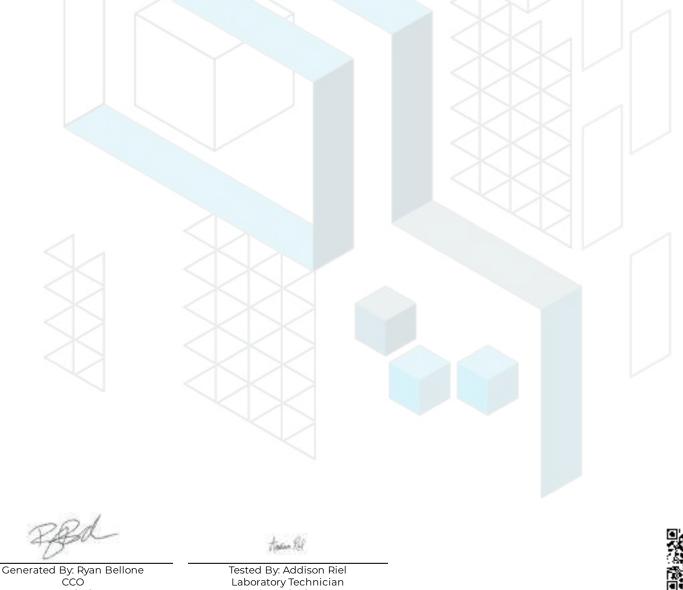
Sample ID: SA-2309 Batch: 09DST226 Type: In-Process Ma Matrix: Concentrate Unit Mass (g):	aterial	Received: 09/06/2023 Completed: 09/12/2023		
Mycotoxins Analyte	by LC-MS/MS	LOQ (ppb)	Result (ppb)	
В1	1	5	ND	
B2	1	5	ND	
G1	1	5	ND	
G2	1	5	ND	
Ochratoxin A	1	5	ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

WWW Generated By: Ryan Bellone Tested By: Jasper van Heemst CCO **Principal Scientist** Date: 09/12/2023 Date: 09/11/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356


+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 6

Naturally Derived Hemp Delta 9 Distillate

Sample ID: SA-230901-26627 Batch: 09DST226 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):	Received: 09/06/2023 Completed: 09/12/2023		Client The Hemp Collect 431 NW Flanders St., Ste. 202 Portland, OR 97209 USA	
Microbials by PCR and P	lating			
Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)	
Analyte Total aerobic count		Result (CFU/g)	Result (Qualitative)	
			Result (Qualitative)	
Total aerobic count		ND	Result (Qualitative)	
Total aerobic count Total coliforms		ND ND	Result (Qualitative)	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Date: 09/12/2023 Date: 09/08/2023 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request. KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 6

Naturally Derived Hemp Delta 9 Distillate

Sample ID: SA-230901-26627 Batch: 09DST226 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):

Received: 09/06/2023 Completed: 09/12/2023 **Client** The Hemp Collect 431 NW Flanders St., Ste. 202 Portland, OR 97209 USA

Residual Solvents by HS-GC-MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Glycol	21	62	ND
Acetonitrile	14	41	ND	Ethylene Oxide	0.5	1	ND
Benzene	0.5	1	ND	Heptane	167	500	ND
Butane	167	500	ND	n-Hexane	10	29	ND
1-Butanol	167	500	ND	Isobutane	167	500	ND
2-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanone	167	500	ND	Isopropyl Alcohol	167	500	ND
Chloroform	2	6	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dichloroethane	0.5	1	ND	2-Methylbutane	10	29	ND
1,2-Dimethoxyethane	4	10	ND	Methylene Chloride	20	60	ND
Dimethyl Sulfoxide	167	500	ND	2-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	3-Methylpentane	10	29	ND
2,2-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
2,3-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
N,N-Dimethylformamide	30	88	ND	n-Propane	167	500	ND
2,2-Dimethylpropane	167	500	ND	1-Propanol	167	500	ND
1,4-Dioxane	13	38	ND	Pyridine	< 7	20	ND
Ethanol	167	500	ND	Tetrahydrofuran	24	72	ND
2-Ethoxyethanol	6	16	ND	Toluene	30	89	ND
Ethyl Acetate	167	500	ND	Trichloroethylene	3	8	ND
Ethyl Ether	167	500	ND	Tetramethylene Sulfone	6	16	ND
Ethylbenzene	3	7	ND	Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 09/12/2023

Tested By: Scott Caudill Laboratory Manager Date: 09/11/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are non-detected amounts.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Customer:	IHC LLC
Product identity:	01LIR209_SG
Client/Metrc ID:	
Laboratory ID:	23-000691-0008

Summary

Potency:			
Potency: Analyte CBD-A CBC-A CBG-A THC-A CBD CBDV-A Δ9-THC	Result (%) 58.2 3.16 3.13 2.61 1.35 1.04 0.380	• CBD-A • CBC-A • CBG-A • CBG-A • CBG-A • THC-A • CBD • CBDV-A • CBDV-A • CBDV-A • CBDV-A • CBDV-A • CBDV-A • CBD-A	
CBG	0.252	• CBC	
CBC	0.170		

Residual Solvents:

All analytes passing and less than LOQ.

_ _ _ _ _ _ _ _ _ _ _ _

Pesticides:

Result (mg/kg)	Limits (mg/kg)	Status
< LOQ for all analytes		
S.		
S.		
	(mg/kg) < LOQ for all analytes	(mg/kg) (mg/kg) < LOQ for all analytes

 Www.columbialaboratories.com
 Page 1 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with:
 OAR 333-007-0430

IHC LLC

.

No

20 °C

ramos

825 NW 16th Ave Portland Oregon 97209

01LIR209_SG

23-000691-0008

United States of America (USA)

Customer:

Product identity:

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Depart Number	22 000601/D005 D000
Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Page 2 of 12

Sample Results

Potency	Method: J AOAC 201	5 V98-6 (mod) ^þ	Units %	Batch: 2300680	Analyze: 1/21/23 5:07:00 AM
Analyte	As Dry		otes		
	Received weigh				CBD-A
CBC	0.170	0.0715			• CBC-A
CBC-A	3.16	0.0715			• CBG-A
CBC-Total	2.94	0.134			THC-A
CBD	1.35	0.0715			• CBD
CBD-A	58.2	0.715			• CBDV-A
CBD-Total	52.4	0.699			Δ9-THC
CBDV	< LOQ	0.0715			• CBG • CBC
CBDV-A	1.04	0.0715			
CBDV-Total	0.901	0.133			
CBE	< LOQ	0.0715			
CBG	0.252	0.0715			
CBG-A	3.13	0.0715			
CBG-Total	3.00	0.133			
CBL	< LOQ	0.0715			
CBL-A	< LOQ	0.0715			
CBL-Total	< LOQ	0.134			
CBN	< LOQ	0.0715			
CBT	< LOQ	0.0715			
$\Delta 10$ -THC-9R	< LOQ	0.0715			
∆8-THC	< LOQ	0.0715			
∆8-THCV	< LOQ	0.0715			
∆9-THC	0.380	0.0715			
exo-THC	< LOQ	0.0715			
THC-A	2.61	0.0715			
THC-Total	2.67	0.134			
THCV	< LOQ	0.0715			
THCV-A	< LOQ	0.0715			
THCV-Total	< LOQ	0.133			
Total Cannabinoids	70.3				

www.columbialaboratories.com Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

.

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Microbiology						
Analyte	Result	Limits Units	LOQ	Batch	Analyzed Method	Status Notes
Mold (RAPID Petrifilm)	< LOQ	cfu/g	10	2300531	01/21/23 AOAC 2014.05 (RAPID) ^b	
Yeast (RAPID Petrifilm)	< LOQ	cfu/g	10	2300531	01/21/23 AOAC 2014.05 (RAPID) ^b	

Solvents	Method:	Residua	I Solve	ents by	GC/MS♭	Units µg/g Batch 23	300722	Analyz	e 01/24/23 1	2:13 PM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200 pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	< LOQ		200	
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200 pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	< LOQ		200	
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0	
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100 pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400 pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200 pass	
Ethyl benzene	< LOQ		200			Ethyl ether	< LOQ	5000	200 pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0 pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200 pass	
Isopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200	
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0 pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	< LOQ		200	
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0	
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200	
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200 pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100 pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	< LOQ	2170	600 pass	

Pesticides	Method: AOAC	2007.01 & EN	15662 (mod) ^p	Units mg/kg	Batch 2300713	Analyze 01/24/23 10:07 AM
Analyte		Result		Limits	Status	Notes
Multi-Residue Pesticide	Profile	< LOQ for all ar	nalytes			

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Arsenic	< LOQ	0.200	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^p	pass
Cadmium	< LOQ	0.200	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass
Lead	< LOQ	0.500	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass
Mercury	< LOQ	0.100	mg/kg	0.0388	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass

 Www.columbialaboratories.com
 Page 3 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Mycotoxins							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Aflatoxin B2 [¥]	< LOQ		µg/kg	5.00	2300576	01/19/23 AOAC 2007.01 & EN 15662 (mod) ^p	
Aflatoxin B1 [*]	< LOQ		µg/kg	5.00	2300576	01/19/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Aflatoxin G1 [*]	< LOQ		µg/kg	5.00	2300576	01/19/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Aflatoxin G2 [*]	< LOQ		µg/kg	5.00	2300576	01/19/23 AOAC 2007.01 & EN 15662 (mod) ^b	
Ochratoxin A [*]	< LOQ	20.0	µg/kg	5.00	2300576	01/19/23 AOAC 2007.01 & EN 15662 (mod) ^b	pass
Total Aflatoxins [¥]	0.000	20.0	µg/kg	20.0		01/24/23 AOAC 2007.01 & EN 15662 (mod) ^b	pass

Page 4 of 12

 Www.columbialaboratories.com
 Page 4 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

 Report Number:
 23-000691/D005.R000

 Report Date:
 01/24/2023

 ORELAP#:
 OR100028

 Purchase Order:
 Received:

 01/17/23 14:16
 01/17/23 14:16

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

^b = ISO/IEC 17025:2017 accredited method.

* = TNI accredited analyte.

Units of Measure

cfu/g = Colony forming units per gram µg/g = Microgram per gram µg/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = µg/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 5 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

olumbia A Terrary Compose

Hemp / Cannabis Usable / Extract / Finished Products

Chain of Custody Record

Revision: 4.00 Controll: CP029 Rev 02/34/2021 Eff: 03/04/2021 CRELAP C: CREL00008

45534553445457							naliys	is Req	ueste	¢.			_	P	0 Number:		
Company: The Hemp Collect Contact: Kyle @thehempcol Street: 431 NW Flanders st Ony: Portland State: 20 Email Results: dropbox (IHI Phr. [b1], b08104 Fx Results states (# elfenet); joe1@thehem	Ur ≥p U) U)	97209	strates - OR59 compareds	Multi-Residue - 179 compounds		ntibal Solemts	Sisture & Water Activity		Root Yeat and Mold	fique: E.Coli and Total Celform	ada.	su		Pro Caston P Report to	leporting: State - 11 ME sol Score 12 Sco 13 Score 12 Sco 13 Score 12 Score 13 S	Thit or	
Lab Client Sample Identification 1 01LIRVAP200 SP	Date	Tree	Pestidie	Perindo	Potenty	heribasi	Molichure	Terpones	Micros %	Mighel E.	Microsi E. Claff a Pressy Metada	Mycotooins	Diffect	Sample Type *	Weight (Units)	Comments/Metrc 10	
2 01LIRVAP200_SP	-		-	-	1x	-	-	-	-	-	-	-	-	č			
	_	-	-	-	x	-	-	_	-	-	-	-		~			
3 0107LIRVAP200_Uama					-	-		_			_			2			
4 0107LIRVAP200_OGK					x									C			
5 01020506LIRVAP200_	10.00				x									C			
6 01020506LIRVAP200_	FV			1	x				1					C			
7 01LIR209_GJ				x	х	х			X		x	x		C			
8 01LIR209_SG				x	x	x			х		х	х		C			
9 01LIR209_Llama				x	×	x			х		х	х		C			
10 01LIR209_TG				x	x	x					x			C	1		
Heinquished Dy:	Date	Time		1	3	location:	Nr.	-	-	0	dai	TR	18			Lab Use Onlyc	
Kyle Farook	1/17	11:00 A		é	E	5	-	1		1-in	13	114	0			es Cl Ro - Temp (PC): 20, es	
- Ba-	1.17	/338		ę.	35					olt	10	ાવણ	b	Simple in [] Cech.]	good condition	t: C) Yes D Mo	

1 - Sample Type Ender: Vagetation (V) ; Isolates (S) ; Estract/Cencentrate (C) ; Texture/Tepical (T) ; Edible (E) ; Reverage (U) Receptor as inclusion in Collardia Education with training requirements contained on opercontains with the exercist town of annex constant of with the COC. In Agoing "Arlingethed by " you are approag to determine

(he service was

12423 NE Whiteler Way Portland, OR 87288

P: (503) 254-1794 (Part (503) 254-2492 (mission) and a second se

Page_____ef____

www.columbialaboratories.com

Page 6 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

1 4 0 4 0 2015 100	^		Lat	oratory	y Quality Co				
AOAC 2015 V98- Laboratory Contro					В	atch ID: 2	300680		
Analyte	LCS	Result	Spike	Units			imits	Evaluation	Notes
CBDVA	2		0,100	%	% Rec			Acceptable	Notes
BDV	2	0.104 0.110	0.100	%	104 104	80.0 80.0	- <u>120</u> - <u>120</u>	Acceptable	
BE	2	0.110	0.100	%	104	80.0		Acceptable	
BDA	1	0.108	0.096	%	103	90.0	- 120 - 110	Acceptable	
BGA	1	0.0968	0.096	%	101	80.0	- 110	Acceptable	
BG	1	0.100	0.099	%	101	80.0	- 120	Acceptable	
BD	1	0.0969	0.097	%	99.6	90.0	- 110	Acceptable	
HCV	2	0.109	0.106	%	102	80.0		Acceptable	
8THCV	2	0.109	0.100	%	102	80.0	- 120 - 120	Acceptable	
HCVA	2	0.108	0.099	%	103	80.0	- 120	Acceptable	
BN	1	0.102	0.102	%	103	80.0	- 120	Acceptable	
xo-THC	2	0.104	0.097	%	102	80.0	- 120	Acceptable	
9THC	1	0.101	0.105	%	104	90.0	- 110	Acceptable	
8THC	1	0.0971	0.100	%	96.7	90.0	- 110	Acceptable	
BL	2	0.108	0.100	%	104	80.0	- 120	Acceptable	
S-HHC	3	0.0995	0.100	%	99.5	80.0	- 120	Acceptable	
10THC	1	0.0995	0.047	%	99.5	80.0	- 120	Acceptable	
BC	2	0.107	0.104	%	103	80.0	- 120	Acceptable	
R-HHC	3	0.0889	0.100	%	88.9	80.0	- 120	Acceptable	
HCA	1	0.0889	0.095	%	101	90.0	- 110	Acceptable	
BCA	2	0.106	0.103	%	101	80.0	- 120	Acceptable	
BLA	2	0.100	0.105	%	103	80.0	- 120	Acceptable	
8THCO	3	0.108	0.100	%	104	80.0	- 120	Acceptable	
BT	2	0.104	0.105	%	104	80.0	- 120	Acceptable	
9THCO	3	0.110	0.100	%	110	80.0	- 120	Acceptable	
Aethod Blank	-	0.110		,	110	00.0	120		
nalyte	Re	esult	LOQ		Units	L	imits	Evaluation	Notes
BDVA	<	_0Q	0.0077	1	%	< 0	0.0077	Acceptable	
CBDV	<	DQ	0.0077		%	< 0	0.0077	Acceptable	
CBE	<	Q	0.0077		%	< 0	0.0077	Acceptable	
CBDA	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
BGA	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
BG	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
BD	<	DQ	0.0077		%	< 0	0.0077	Acceptable	
HCV	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
8THCV	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
HCVA		LOQ	0.0077		%		0.0077	Acceptable	
BN	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
xo-THC	<	LOQ	0.0077		%	< 0	0.0077	Acceptable	
9THC		LOQ	0.0077		%		0.0077	Acceptable	
8THC		LOQ	0.0077		%		0.0077	Acceptable	
BL		LOQ	0.0077		%		0.0077	Acceptable	
S-HHC		LOQ	0.0077		%		0.0077	Acceptable	
10THC		LOQ	0.0077		%	-).0077	Acceptable	
BC		DQ	0.0077	%		-	0.0077	Acceptable	
R-HHC		LOQ	0.0077		%		0.0077	Acceptable	
HCA		LOQ	0.0077		%		0.0077	Acceptable	
BCA		LOQ	0.0077		%).0077	Acceptable	
		LOQ	0.0077		%		0.0077	Acceptable	
		LOQ	0.0077	%		< (0.0077	Acceptable	
I8THCO									
CBLA 18THCO CBT 19THCO	<1	LOQ LOQ	0.0077		% % %	< 0	0.0077	Acceptable Acceptable	

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Units of Measure: % - Percent

Page 7 of 12 www.columbialaboratories.com Page 7 of 12 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

J AOAC 2015 V98-6		Batch ID: 2300680									
Sample Duplicate	Sample ID: 23-000673-0001										
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes			
CBDVA	0.0236	0.0235	0.077	%	0.271	< 20	Acceptable				
CBDV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBE	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBDA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBGA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBG	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBD	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBN	0.0340	0.0342	0.077	%	0.526	< 20	Acceptable				
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
d8THC	0.189	0.172	0.077	%	9.34	< 20	Acceptable				
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
9S-HHC	39.6	38.5	0.077	%	2.70	< 20	Acceptable				
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
9R-HHC	36.9	35.2	0.077	%	4.96	< 20	Acceptable				
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBCA	<loq< td=""><td><loq.< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq.<></td></loq<>	<loq.< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq.<>	0.077	%	NA	< 20	Acceptable				
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
d8THCO	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
CBT	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				
d9THCO	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable				

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

R2 - Sample replicates RPD non-calculable, as only one replicate is within analytical range.

Units of Measure:

Page 8 of 12
<u>www.columbialaboratories.com</u>
Page 8 of 12
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Test results retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

3-Methylpentane ND <									Legacy	ID:	CF	FL-E	33Effective:
Method Blank Analyte ND CO Notes Spike Notes Spike Notes Notes Propane ND < 200 650 751 10/2 552 10/2 552 10/2 552 10/2 552 <t< th=""><th>Residual Solvents</th><th>Lar</th><th>oratory</th><th>Quai</th><th>ty Contr</th><th>of Results</th><th>Bat</th><th>ch ID.</th><th>23007</th><th>22</th><th></th><th></th><th></th></t<>	Residual Solvents	Lar	oratory	Quai	ty Contr	of Results	Bat	ch ID.	23007	22			
Analye Result Spike Units 8 As 2 601 120 Disobutane NO < 200 623 731 He/g 833 601 120 Disobutane NO < 200 623 731 He/g 830 61 120 2.2.Dimethyluropane NO < 200 8312 936 He/g 831 610 120 2.2.Dimethyluropane NO < 200 1310 1610 He/g 824 120 120 Cherthyluropane NO < 200 1310 1610 He/g 824 170 130 Ethylenc Oxide NO < 200 1330 1510 He/g 823 601 120 120 2.2.Dimethylurone NO < 200 1340 1530 He/g 823 60 120 120 2.2.Dimethylurone NO < 300 1338 1711 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>h</th> <th></th> <th></th> <th>230077</th> <th>~~</th> <th></th> <th></th> <th></th>						h			230077	~~			
Propane ND <		D 14							01 B				•• •
Solutane ND <					Notes								Notes
Butane ND <											-		
2.2-Dimethylpropane ND < 200 812 935 µ/4 85.8 60 1.20 Ethylene Oxide ND <											-		
Methan ND < 200 1410 1520 µµµ 87.0 60 1.20 2-Methylutane ND <											-		
Ethylen Oxde ND 30 49 56.2 µµµ 87.2 60 1.20 Pentane ND 200 1330 1600 µµ/ 88.1 60 1.20 Pentane ND 200 1340 1630 µµ/ 88.1 60 1.20 Ethyl Ether ND 200 1340 1630 µµ/ 88.2 60 1.20 Z-Dimethylbutane ND 200 1340 1630 µµ/ 88.2 60 1.20 Z-Propanol ND 200 1340 1630 µµ/ 88.1 60 1.20 Ethyl Formate ND 500 1380 117.0 µµ/ 88.1 60 120 Z-Propanol ND 500 1350 117.4 47.6 68.1 60 120 Z-Propanol ND 30 17.7 130 120											-		
2-Metrylbutane NO 200 1330 1150 1120 28.5 60 120 Ethanol ND 200 1330 1160 1146 1146 1160 1146 1160 1146 1160 </td <td></td> <td>-</td> <td></td> <td></td>											-		
Pentane ND < 200 1330 1600 µµ/g 83.1 60 2.00 Effyrt Ether ND <											-		
Ethanol NO < 200 1400 1500 μ_{fg}^{-1} 82.0 70 130 2.7.0methylbutane NO <											-		
Entry Ether ND < 200 1340 1630 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 120 120 Acetone ND <											-		
2.2-Denchylbutane ND < 30 138 171 $\mu/p/r$ 80.7 120 2+ropanol ND <											-		
Actone ND < 200 1340 1630 µµ/r 82.2 60 120 Ethyl Formate ND <											-		
2-Propanol ND < 200 1440 1630 $\mu/p/r$ 88.9 60 120 Actonirile ND <											-		
Entry Formate ND < 500 1380 1670 μ_{2}/ϵ 82.6 70 130 Actiontrile ND <											-		
Acctontrile ND < 100 409 409 409 409 409 400 120 100 2.4-Dimetrylhutane ND <											-		
Methyl Acetate ND < 500 1460 1731 $\mu g/g$ 84.4 20 130 2-binethylburane ND <											-		
2.3-Dimethylputane ND < 30 135 171 192/k 78.9 60 20 2-Methylpentane ND <											-		
Dichformethane ND < 60 406 483 jug/z 84.1 160 120 Zhethylpentane ND <			<								-		
2-Methylpentane ND < 30 146 168 µd/g 96.9 100 3-Methylpentane ND <		ND	<	60		406	483		84.1	60	-	120	
MTBE ND < Soot 1520 1650 $\mu_{d/k}$ 92.1 70 130 3 Methylpentane ND <			<								-		
3-Methylpentane ND < 30 125 167 μ/g 74.5 60 120 1-Propanol ND <	MTBE	ND	<	500		1520	1650		92.1	70	-	130	
1-Progrand ND <	3-Methylpentane	ND	<	30		125	167		74.9	60	-	120	
1-Propanol ND < 500 1420 1420 1420 1427 70 130 Ethyl acetate ND <	Hexane	ND	<	30		178	182	µg/g	97.8	60	-	120	
Ethylacetate ND < 200 1360 1610 µµ/g R83, 60 120 2Butanol ND <	1-Propanol	ND	<	500		1420	1620		87.7	70	-	130	
2-Butanol ND < 200 1430 1600 $\mu g/r_R$ 89.4 60 120 Cyclohexane ND <	Methylethylketone	ND	<	500		1330	1620	µg/g	82.1	70	-	130	
Tetrahydrofuran ND < 100 <t< td=""><td>Ethyl acetate</td><td>ND</td><td><</td><td>200</td><td></td><td>1360</td><td>1610</td><td>μg/g</td><td>84.5</td><td>60</td><td>-</td><td>120</td><td></td></t<>	Ethyl acetate	ND	<	200		1360	1610	μg/g	84.5	60	-	120	
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2-Butanol	ND	<	200		1430	1600	µg/g	89.4	60	-	120	
2-methyl-1-propanol ND < 500 1360 1620 $\mu g/g$ 84.0 70 - 120 Benzene ND <	Tetrahydrofuran		<					µg/g	82.2		-		
Benzen ND < 1 4.42 5.02 μ_g/g 88.0 60 - 120 isoprop/Acetate ND <											1		
$\begin{split} & \text{is ppropyl Acetate} & \text{ND} & < 200 & 1450 & 1620 & \mu_g/g & 89.5 & 60 & 120 \\ & \text{Heptane} & \text{ND} & < 200 & 1280 & 1610 & \mu_g/g & 89.0 & 70 & 130 \\ & \text{Isturanol} & \text{ND} & < 500 & 11450 & 1610 & \mu_g/g & 89.0 & 70 & 130 \\ & \text{Propyl Acetate} & \text{ND} & < 500 & 1310 & 1610 & \mu_g/g & 81.4 & 70 & 130 \\ & \text{Propyl Acetate} & \text{ND} & < 500 & 1310 & 1610 & \mu_g/g & 81.4 & 70 & 130 \\ & \text{Isturanol} & \text{ND} & < 500 & 1310 & 1610 & \mu_g/g & 81.4 & 70 & 130 \\ & \text{Isturanol} & \text{ND} & < 30 & 296 & 181 & \mu_g/g & 81.4 & 70 & 130 \\ & \text{2-thoxyethanol} & \text{ND} & < 30 & 296 & 181 & \mu_g/g & 84.7 & 70 & 130 \\ & \text{2-thoxyethanol} & \text{ND} & < 500 & 1260 & 1620 & \mu_g/g & 84.7 & 70 & 130 \\ & \text{2-thoxyethanol} & \text{ND} & < 500 & 1380 & 1630 & \mu_g/g & 84.7 & 70 & 130 \\ & \text{3-Methyl-1-butanol} & \text{ND} & < 500 & 1380 & 1630 & \mu_g/g & 84.7 & 70 & 130 \\ & \text{Toluene} & \text{ND} & < 500 & 1380 & 1630 & \mu_g/g & 84.7 & 70 & 130 \\ & \text{Isouchyl Acetate} & \text{ND} & < 500 & 1330 & 1620 & \mu_g/g & 81.0 & 70 & 130 \\ & \text{1-entanol} & \text{ND} & < 500 & 1330 & 1620 & \mu_g/g & 82.1 & 70 & 130 \\ & \text{1-entanol} & \text{ND} & < 500 & 1330 & 1620 & \mu_g/g & 82.1 & 70 & 130 \\ & \text{Isouchyl Acetate} & \text{ND} & < 500 & 1280 & \mu_g/g & 73.5 & 60 & 120 \\ & \text{mp-ylytene} & \text{ND} & < 200 & 720 & 994 & \mu_g/g & 73.5 & 60 & 120 \\ & \text{mp-ylytene} & \text{ND} & < 500 & 1126 & 1171 & \mu_g/g & 73.7 & 60 & 120 \\ & \text{Cumene} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1120 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1340 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1340 & 1630 & \mu_g/g & 82.7 & 70 & 130 \\ & \text{Linderbyderbane} & \text{ND} & < 500 & 1340 & 1630 & \mu_g/g & 82.$	2-methyl-1-propanol		<	500		1360	1620	μg/g			1		
Heptane ND < 200 1280 1610 $\mu g/g$ 79.5 60 120 1-Butanol ND <	Benzene							μg/g			1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											1		
Prop/Acetate ND < S00 1310 1610 $\mu g/g$ 81.4 70 - 130 1,4-Dioxane ND <											1		
1.4-Dioxane ND < 100 390 491 $\mu g/g$ 79.4 60 120 2-Ethoxyethanol ND <											-		
2 Ethoxyethanol ND < 30 296 181 $\mu g/g$ 163.5 60 120 Q1 Methylisobutylketone ND <											-		
Methylketone ND < S00 1260 1620 μ_g/g 77.8 70 - 130 3-Methyl-1-butanol ND <											-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		Q1
Ethylene Glycol ND < 200 652 484 $\mu g/g$ 134.7 601 120 Cl Toluene ND <											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		цı
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
Butyl Acetate ND < 500 1280 1620 $\mu g/g$ (P3,0) 70 130 Ethylbenzene ND <											-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
o-Xylene ND < 200 694 967 $\mu g/g$ 71.8 60 120 Cumene ND <											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			_										
Anisole ND < \$00 1120 1630 $\mu g/g$ 68.7 70 - 130 Q6 DMSO ND <													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											H.		06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
Sulfolane ND < 50 198 172 µg/g 115.1 70 - 130 J.2-Dichloroethane ND <											-		
ND < 1 0.857 1 µg/g 85.7 70 - 130 Chloroform ND <			<								-		
ND < 1 0.892 1 µg/g 89.2 70 - 130 Trichloroethylene ND <											-		
Trichloroethylene ND < 1 0.93 1 µg/g 93.0 70 - 130			<				1				-		
			<								-		
	1,1-Dichloroethane							μg/g			-		

Page 9 of 12

 Www.columbialaboratories.com
 Page 9 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

Revision: 2 Document ID: 7087

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

QC - Sample Duplicate						Sample IF): 23-000158-0002	
Analyte	Result	Org. Result	LOO	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	μg/g	0.0	< 20	Acceptable	Hotes
Isobutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	μg/g	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND	500	μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	60	μg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
MTBE	ND	ND	500	μg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	μg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	300	μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500	μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Methylisobutylketone	ND	ND	500	μg/g	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	100	μg/g	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500	μg/g	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500	μg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200		0.0	< 20		
etnyibenzene m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable Acceptable	
m,p-xylene o-Xylene	ND	ND	200	μg/g μg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	200	μg/g μg/g	0.0	< 20	Acceptable	
Anisole	ND	ND	500		0.0	< 20	Acceptable	
DMSO	ND	ND	500	µg/g	0.0	< 20		
	ND	ND		µg/g	0.0	< 20	Acceptable	
1,2-dimethoxyethane			50	µg/g			Acceptable	
Triethylamine	ND	ND	500	µg/g	0.0	< 20	Acceptable	
N,N-dimethylformamide	ND	ND	150	µg/g	0.0	< 20	Acceptable	
N,N-dimethylacetamide	ND	ND	150	µg/g	0.0	< 20	Acceptable	
Pyridine	ND	ND	50	µg/g	0.0	< 20	Acceptable	
Sulfolane	ND	ND	50	µg/g	0.0	< 20	Acceptable	
1,2-Dichloroethane	ND	ND	1	µg/g	0.0	< 20	Acceptable	
Chloroform	ND	ND	1	µg/g	0.0	< 20	Acceptable	
Trichloroethylene	ND	ND	1	µg/g	0.0	< 20	Acceptable	
1,1-Dichloroethane	ND	ND	1	µg/g	0.0	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL

Units of Measure: µg/g- Microgram per gram or ppm

RPD - Relative Percent Difference LOQ - Limit of Quantitation

Q1 - Quality control result biased high. Only non-detect samples reported. Q6 - Quality control outside QC limits. Data acceptable based on remaining QC.

Page 10 of 12 www.columbialaboratories.com Page 10 of 12 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	23-000691/D005.R000
Report Date:	01/24/2023
ORELAP#:	OR100028
Purchase Order:	
Received:	01/17/23 14:16

Page 11 of 12

 Www.columbialaboratories.com
 Page 11 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

Report Number: 23-000691/D005.R000 **Report Date:** 01/24/2023 **ORELAP#:** OR100028 **Purchase Order:** 01/17/23 14:16 **Received:**

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

www.columbialaboratories.com

Page 12 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430