

Report Number: 22-011954/D004.R000

Report Date: 10/11/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/04/22 15:48

Customer: IHC LLC

Product identity: Live CBD Sugar - STs

Client/Metrc ID:

Laboratory ID: 22-011954-0003

Summary

Potency: Result (%) **Analyte CBD-Total** 86.3% CBD 81.3 CBD OBD-A CBD-A 5.69 CBT CBT 0.970 THC-Total <LOQ CBC CBC 0.657 CBN CBN 0.457 (Reported in percent of total sample) CBDV **CBDV** 0.404 CBG CBG 0.274 CBG-A CBG-A 0.0887 CBDV-A CBDV-A 0.0841

Report Number: 22-011954/D004.R000

Report Date: 10/11/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/04/22 15:48

Customer: IHC LLC

825 NW 16th Ave Portland Oregon 97209 United States of America (USA)

Product identity: Live CBD Sugar - STs

Client/Metrc ID:

Sample Date:

Laboratory ID: 22-011954-0003

Evidence of Cooling: No
Temp: 16.6 °C
Relinquished by: Ramos

Sample Results

Potency	Method: J AOAC 201	5 V98-6 (mod)♭ Units %	Batch: 2208465	Analyze: 10/5/22	11:40:00 PM
Analyte	As Dry Received weigl	LOQ ht	Notes			CBD
CBC	0.657	0.0754				CBD-A
CBC-A	< LOQ	0.0754				• CBD-A
CBC-Total	0.657	0.141				O CBC
CBD	81.3	0.754		N N		CBN
CBD-A	5.69	0.0754				CBDV
CBD-Total	86.3	0.820				CBG
CBDV	0.404	0.0754				CBG-A
CBDV-A	0.0841	0.0754				CBDV-A
CBDV-Total	0.477	0.141				
CBE	< LOQ	0.0754				
CBG	0.274	0.0754				
CBG-A	0.0887	0.0754				
CBG-Total	0.352	0.141				
CBL	< LOQ	0.0754				
CBL-A	< LOQ	0.0754				
CBL-Total	< LOQ	0.141				
CBN	0.457	0.0754				
CBT	0.970	0.0754				
Δ10-THC	< LOQ	0.0754				
Δ8-THC	< LOQ	0.0754				
Δ8-THCV	< LOQ	0.0754				
Δ9-THC	< LOQ	0.0754				
exo-THC	< LOQ	0.0754				
THC-A	< LOQ	0.0754				
THC-Total	< LOQ	0.141				
THCV	< LOQ	0.0754				
THCV-A	< LOQ	0.0754				
THCV-Total	< LOQ	0.141				
Total Cannabinoids	89.9					

Report Number: 22-011954/D004.R000

Report Date: 10/11/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/04/22 15:48

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

p = ISO/IEC 17025:2017 accredited method.

Units of Measure

% = Percentage of sample % wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

Report Number: 22-011

22-011954/D004.R000

Report Date:

10/11/2022

ORELAP#:

OR100028

Purchase Order:

Received: 10/04/22 15:48

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4,00 Controlt: CF023 Rev 02/24/2021 EM: 03/04/2021 ORE:APID: OR100008

					. 7	- 6	matyo	a Rasg	100 000	ď.		-0		- 1	Marchae	
Contact: Kyle@thenempcollect.com Street: 431 NW Flanders st. Ony Portland State: UF 3tp. 97209 El Email Results: Gropbox (IHG) Ph. (61) 606164 Fr. Results: L) Elling If different; Joel@thehempcollect.com			s - DR 59 compounds	sticide Multi-Residue - 579 cempounds		endual Solvents	Abishare & Water Activity		Alleges Years and Male	Acon: E.Cali and Total Colliform	Metals	п		Projec Proj Custom I Report Ix	s Number _ ect Name _ leparting: _ s State 1 nd time:	Attract or Other. 5 Besiness (bay Scandard Tremercond) 3 Business Day Bush Terroround* 2 Business Day Bush Turnaround* "Check for exercises bits."
Lab Client Sample Identification 1 010SFTM10_WC	Clate	Time	setticides.	Peticida	X Patency	Rendon	Meistere	Terpane	Month	Mence	Honey 74	Mycotopins	OBec	Sample Type I	Weight. (Units)	Comment/Meric io Sample #3: Alternate Client
2 08DST220					Х									C:		name: Sauce Warehouse
3 Live CBD Sugar - STs					x									C		
4																
5																
3		-		$\overline{}$	$\overline{}$											The state of the s
8					-				-			-				
9																
10			\vdash	\vdash	-				_	_						
Relingated No	Cute	Time			- 70	grand	Be		-	Ili	te.	Tir	ne .			Lahi the Ordy:
Cyle Farook	10/3	12:00		10	75	12	- 11			10.	4	12	io.	☐ Shippe	dVis:	or [] Client drop
70.4 1400			_	ا	E				10/4 12/0				Evidence of cooling: 🗆 Yes 🗆 No - Temp (*C): 16, 6			

T - Sample Type Codes: Vegetation (V) ; Resistes (S) ; Entrect/Concentrate (C) ; Tincture/Topical (T) ; Editio (T) ; Severage (S)

Applicational of Charles Laboratoria et in term representation and appropriate and appropriate

22-011954/D004.R000 **Report Number:**

Report Date: 10/11/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/04/22 15:48

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

			Ial	horatory	(C)uality (δ	ntrol Resu t s		•	
JAOAC2015 V98	6			00. a.o. y		atch ID: 2208			
Laboratory Contro									
Analyte	LCS	Result	Spike	Units	%Rec	Limit	s	Evaluation	Notes
CBDVA	2	0.108	0.103	%	105	80.0 -	120	Acceptable	
CBDV	2	0.114	0.110	%	104	80.0 -	120	Acceptable	
CEE	2	0.106	0.105	%	101	80.0 -	120	Acceptable	
CBDA	1	0.105	0.100	%	104	90.0 -	110	Acceptable	
CBGA	1	0.105	0.101	%	104	80.0 -	120	Acceptable	
CBG	1 1	0.108	0.103	%	105	80.0 -	120	Acceptable	
CBD	1	0.111	0.103	%	108	90.0 -	110	Acceptable	
THCV	2	0.118	0.113	%	105	80.0 -	120	Acceptable	
d8THCV	2	0.117	0.110	%	106	80.0 -	120	Acceptable	
THCVA	2	0.106	0.101	%	105	80.0 -	120	Acceptable	
CBN	1	0.107	0.101	%	105	90.0 -	110	Acceptable	
exo-THC	2	0.108	0.103	%	105	80.0 -	120	Acceptable	
d9THC	1	0.108	0.104	%	105	90.0 -	110	Acceptable	
d8THC	1	0.108	0.100	%	107	90.0 -	110	Acceptable	
CBL	2	0.102	0.099	%	104	80.0 -	120	Acceptable	
d10THC	1	0.0987	0.096	%	103	80.0 -	120	Acceptable	
CBC	2	0.114	0.108	%	105	80.0 -	120	Acceptable	
THCA	1	0.104	0.099	%	104	90.0 -	110	Acceptable	
CBCA	2	0.106	0.105	%	100	80.0 -	120	Acceptable	
CB.A	2	0.0575	0.056	%	103	80.0 -	120	Acceptable	
CB	2	0.112	0.112	%	100	80.0 -	120	Acceptable	
Method Bank	•								
Analyte		esult	LOQ		Units	Limit		Evaluation	Notes
CBDVA		_OQ	0.0077		%	< 0.00		Acceptable	
CBDV		_OQ	0.0077		%	< 0.00		Acceptable	
CEE		_OQ	0.0077		%	< 0.00		Acceptable	
CBDA		_OQ	0.0077		%	< 0.00		Acceptable	
CBGA		_OQ	0.0077		%	< 0.00		Acceptable	
CBG		_OQ	0.0077		%	< 0.00		Acceptable	
CBD		_OQ	0.0077		%	< 0.00		Acceptable	
THCV		_OQ	0.0077		%	< 0.00		Acceptable	
d8THCV		_OQ	0.0077		%	< 0.00		Acceptable	
THCVA		_OQ	0.0077		%	< 0.00		Acceptable	
CBN		_OQ	0.0077		%	< 0.00		Acceptable	
exo-THC		_OQ	0.0077		%	< 0.00		Acceptable	
d9THC		_OQ	0.0077	1	%	< 0.00		Acceptable	
d8THC		_OQ	0.0077		%	< 0.00		Acceptable	
CBL		_OQ	0.0077		%	< 0.00		Acceptable	
d10THC	4	_OQ	0.0077		%	< 0.00	//	Acceptable	

< 0.0077 < 0.0077 < 0.0077

< 0.0077

Acceptable Acceptable

Acceptable Acceptable

CEC
THCA
CECA
CELA
CBI
Abbreviations

s
ND - None Detected at or above MRL
RPD - Relative Percent Difference
LOQ- Limit of Quartitation

<LOQ <LOQ

<LOQ

0.0077

0.0077

0.0077

Units of Measure: %- Percent

22-011954/D004.R000 **Report Number:**

Report Date: 10/11/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/04/22 15:48

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

JAOAC2015 V986						atch ID: 2208465		
Sample Duplicate					San	nple ID: 22-009750	0003	
Analyte	Result	Org. Reult	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	0.541	0.538	0.077	%	0.627	< 20	Acceptable	
CBDV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CEE	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDA	77.2	79.7	0.077	%	3.24	< 20	Acceptable	
CEGA	0.468	0.527	0.077	%	11.7	< 20	Acceptable	
CBG	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBD	5.52	5.66	0.077	%	2.59	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBN	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CB.	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CECA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBI	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ- Limit of Quartitation

Units of Measure:

Report Number: 22-011954/D004.R000

10/11/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

Received: 10/04/22 15:48

22-011954/D004.R000 **Report Number:**

Report Date: 10/11/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/04/22 15:48

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

Sample ID SD230412-042 (720	70)	Matrix Concentrate (Inhalable Cannabis Good)
Tested for The Hemp Collect		
Sampled -	Received Apr 12, 2023	Reported Apr 24, 2023
Analyses executed CAN+, RES	i, MIBIG, MTO, PES, HME, FVI	

CAN+ - Cannabinoids Analysis

Analyzed Apr 24, 2023 | Instrument HPLC-VWD | Method SOP-001

The expanded Uncertainty of the Cannabinoid analysis is approximately 4.806% at the 95% Confidence Level

Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	0.77	7.73
Cannabidiol (CBD)	0.001	0.16	49.16	491.56
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	2.29	22.93
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	ND	ND
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	ND	ND
Cannabicyclol (CBL)	0.002	0.16	0.76	7.64
Cannabichromene (CBC)	0.002	0.16	5.71	57.09
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Total THC (THCa * 0.877 + Δ9THC)			ND	ND
Total THC + Δ 8THC (THCa $^{\circ}$ 0.877 + Δ 9THC + Δ 8THC)			ND	ND
Total CBD (CBDa * 0.877 + CBD)			49.16	491.56
Total CBG (CBGa * 0.877 + CBG)			0.77	7.73
Total Cannabinoids			58.70	586.95

HME - Heavy Metals Detection Analysis

Analyzed Apr 14, 2023 | Instrument ICP/MSMS | Method SOP-005

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Arsenic (As)	0.0002	0.0005	ND	0.2	Cadmium (Cd)	3.0e-05	0.0005	ND	0.2
Mercury (Hg)	1.0e-05	0.0001	ND	0.1	Lead (Pb)	1.0e-05	0.00125	ND	0.5

MIBIG - Microbial Testing Analysis

Analyzed Apr 17, 2023 | Instrument qPCR and/or Plating | Method SOP-007

Analyte	Result CFU/g	Limit	Analyte	Result CFU/g	Limit
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram
Asperaillus niger	ND	ND per 1 gram	Asperaillus terreus	ND	ND per 1 gram

MTO - Mycotoxin Testing Analysis

Analyzed Apr 14, 2023 | Instrument LC/MSMS | Method SOP-004

Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg	Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULQL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Mon, 24 Apr 2023 14:10:27 -0700

PES - Pesticides Screening Analysis

Analyzed Apr 14, 2023 | Instrument LC/MSMS GC/MSMS | Method SOP-003

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Aldicarb	0.0078	0.02	ND	0.0078	Carbofuran	0.01	0.02	ND	0.01
Dimethoate	0.01	0.02	ND	0.01	Etofenprox	0.02	0.1	ND	0.02
Fenoxycarb	0.01	0.02	ND	0.01	Thiachloprid	0.01	0.02	ND	0.01
Daminozide	0.01	0.03	ND	0.01	Dichlorvos	0.02	0.07	ND	0.02
Imazalil	0.02	0.07	ND	0.02	Methiocarb	0.01	0.02	ND	0.01
Spiroxamine	0.01	0.02	ND	0.01	Coumaphos	0.01	0.02	ND	0.01
Fipronil	0.01	0.1	ND	0.01	Paclobutrazol	0.01	0.03	ND	0.01
Chlorpyrifos	0.01	0.04	ND	0.01	Ethoprophos (Prophos)	0.01	0.02	ND	0.01
Baygon (Propoxur)	0.01	0.02	ND	0.01	Chlordane	0.04	0.1	ND	0.04
Chlorfenapyr	0.03	0.1	ND	0.03	Methyl Parathion	0.02	0.1	ND	0.02
Mevinphos	0.03	0.08	ND	0.03	Abamectin	0.03	0.08	ND	0.1
Acephate	0.02	0.05	ND	0.1	Acetamiprid	0.01	0.05	ND	0.1
Azoxystrobin	0.01	0.02	ND	0.1	Bifenazate	0.01	0.05	ND	0.1
Bifenthrin	0.02	0.35	ND	3	Boscalid	0.01	0.03	ND	0.1
Carbaryl	0.01	0.02	ND	0.5	Chlorantraniliprole	0.01	0.04	ND	10
Clofentezine	0.01	0.03	ND	0.1	Diazinon	0.01	0.02	ND	0.1
Dimethomorph	0.02	0.06	ND	2	Etoxazole	0.01	0.05	ND	0.1
Fenpyroximate	0.02	0.1	ND	0.1	Flonicamid	0.01	0.02	ND	0.1
Fludioxonil	0.01	0.05	ND	0.1	Hexythiazox	0.01	0.03	ND	0.1
Imidacloprid	0.01	0.05	ND	5	Kresoxim-methyl	0.01	0.03	ND	0.1
Malathion	0.01	0.05	ND	0.5	Metalaxyl	0.01	0.02	ND	2
Methomyl	0.02	0.05	ND	1	Myclobutanil	0.02	0.07	ND	0.1
Naled	0.01	0.02	ND	0.1	Oxamyl	0.01	0.02	ND	0.5
Permethrin	0.01	0.02	ND	0.5	Phosmet	0.01	0.02	ND	0.1
Piperonyl Butoxide	0.02	0.06	ND	3	Propiconazole	0.03	0.08	ND	0.1
Prallethrin	0.02	0.05	ND	0.1	Pyrethrin	0.05	0.41	ND	0.5
Pyridaben	0.02	0.07	ND	0.1	Spinosad A	0.01	0.05	ND	0.1
Spinosad D	0.01	0.05	ND	0.1	Spiromesifen	0.02	0.06	ND	0.1
Spirotetramat	0.01	0.02	ND	0.1	Tebuconazole	0.01	0.02	ND	0.1
Thiamethoxam	0.01	0.02	ND	5	Trifloxystrobin	0.01	0.02	ND	0.1
Acequinocyl	0.02	0.09	ND	0.1	Captan	0.01	0.02	ND	0.7
Cypermethrin	0.02	0.1	ND	1	Cyfluthrin	0.04	0.1	ND	2
Fenhexamid	0.02	0.07	ND	0.1	Spinetoram J,L	0.02	0.07	ND	0.1
Pentachloronitrobenzene	0.01	0.1	ND	0.1	·				

RES - Residual Solvents Testing Analysis

Analyzed Apr 20, 2023 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

Analyte	LOI ug/		Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Propane (Prop)	0.4	40.0	ND		Butane (But)	0.4	40.0	ND	
Methanol (Metha)	0.4	40.0	ND		Ethylene Oxide (EthOx)	0.4	0.8	ND	
Pentane (Pen)	0.4	40.0	ND		Ethanol (Ethan)	0.4	40.0	ND	
Ethyl Ether (EthEt)	0.4	40.0	ND		Acetone (Acet)	0.4	40.0	<loq< td=""><td></td></loq<>	
Isopropanol (2-Pro)	0.4	40.0	ND		Acetonitrile (Acetonit)	0.4	40.0	ND	
Methylene Chloride (MetCh)	0.4	0.8	ND		Hexane (Hex)	0.4	40.0	ND	
Ethyl Acetate (EthAc)	0.4	40.0	ND		Chloroform (Clo)	0.4	0.8	ND	
Benzene (Ben)	0.4	0.8	ND		1-2-Dichloroethane (12-Dich)	0.4	0.8	ND	
Heptane (Hep)	0.4	40.0	ND		Trichloroethylene (TriClEth)	0.4	0.8	ND	
Toluene (Toluene)	0.4	40.0	ND		Xulenes (Xul)	0.4	40.0	ND	

FVI - Filth & Foreign Material Inspection Analysis

Analyzed Apr 13, 2023 | Instrument Microscope | Method SOP-010

Analyte / Limit	Result	Analyte / Limit	Result
> 1/4 of the total sample area covered by sand, soil, cinders, or dirt	ND	> 1/4 of the total sample area covered by mold	ND
> 1 insect fragment, 1 hair, or 1 count mammalian excreta per 3q	ND	> 1/4 of the total sample area covered by an imbedded foreign material	ND

UI Not Identified
ND Not Detected
NA Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
«LOQ Detected
»ULOL Above upper limit of linearity
CFU/g Colony Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Branden Starr

Brandon Starr, Lab Manager Mon, 24 Apr 2023 14:10:27 -0700

