

Report Number:	22-013731/D002.R000
Report Date:	11/15/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	11/08/22 12:38

Customer:	IHC LLC
Product identity:	0103LIRDST200_SSC
Client/Metrc ID:	
Laboratory ID:	22-013731-0001

Su	m	m	а	rv	

Analyte	Result (%)			
∆8-THC	80.7		CBD-Total	3.43%
CBD-A	3.62	 Δ8-THC 		
∆8-THCV	0.270	 CBD-A 	THC-Total	0.147%
CBD	0.253	● ∆8-THCV		
CBT	0.219	CBD	(Reported in per	rcent of total sample)
THC-A	0.167	CBT		
		THC-A		

Page 1 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

IHC LLC

.

No

6.9

hinton

825 NW 16th Ave Portland Oregon 97209

22-013731-0001

0103LIRDST200_SSC

United States of America (USA)

Customer:

Product identity:

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

22-013731/D002.R000
11/15/2022
OR100028
11/08/22 12:38

Sample Results

Potency	Method: J AOAC 201	5 V98-6 (mod) ^þ Ui	nits % Batch: 2209668	Analyze: 11/10/22 12:56:00 A
Analyte	As Dry	LOQ Notes		
	Received weigh			
CBC	< LOQ	0.0737		
CBC-A	< LOQ	0.0737		 Δ8-THC ΔRD 4
CBC-Total	< LOQ	0.138		 CBD-A Δ8-THCV
CBD	0.253	0.0737		○ CBD
CBD-A	3.62	0.0737		• CBT
CBD-Total	3.43	0.138		• THC-A
CBDV	< LOQ	0.0737		
CBDV-A	< LOQ	0.0737		
CBDV-Total	< LOQ	0.138		
CBE	< LOQ	0.0737		
CBG	< LOQ	0.0737		
CBG-A	< LOQ	0.0737		
CBG-Total	< LOQ	0.138		
CBL	< LOQ	0.0737		
CBL-A	< LOQ	0.0737		
CBL-Total	< LOQ	0.138		
CBN	< LOQ	0.0737		
CBT	0.219	0.0737		
$\Delta 10$ -THC	< LOQ	0.0737		
∆8-THC	80.7	0.737		
∆8-THCV	0.270	0.0737		
∆9-THC	< LOQ	0.0737		
exo-THC	< LOQ	0.0737		
THC-A	0.167	0.0737		
THC-Total	0.147	0.138		
THCV	< LOQ	0.0737		
THCV-A	< LOQ	0.0737		
THCV-Total	< LOQ	0.138		
Total Cannabinoids	85.2			

www.columbialaboratories.com

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Testing in accordance with: OAR 333-007-0430

 Report Number:
 22-013731/D002.R000

 Report Date:
 11/15/2022

 ORELAP#:
 OR100028

 Purchase Order:
 11/08/22 12:38

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

^b = ISO/IEC 17025:2017 accredited method.

Units of Measure

% = Percentage of sample % wt = $\mu g/g$ divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 3 of 8

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	22-013731/D002.R000
Report Date:	11/15/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	11/08/22 12:38

			-1111			2		inalys.	is tec	unate	d .			_		A Nerver		
	Ine Hemp Collect exted: kyle@thehempcolk ext. 431 NW Planders st. Mortland State: Dmail Results: dropbox (IHC) (b1) 601164 (IFC) g st efferred; joes/sithethemp	(L 1	lect.com → _{31p} <u>972(39</u>		⊧ <u>ap</u> 97209		eside Muttelesidae – 379 compounds		Seharta	h Water Activity		ts Yourst and Minhl	Land Total Colforms	ti.			Project Names: Project Name: D, stare Reporting: Report to Store - [] METRC or [] Other: To nonsourd tense: 92 5 Rooteness Day Starebert Terratours [] 3 Rooteness Day Root Terratours* [] 2 8 Johness Day Root Terratours* "Thenh for revelativity	
4	2 - 923 - Wes		101018	slotten-	Side N	denos	dial Sc	ditter A	savaduz	in Year	kros #.Coll.	any Metals	Accelera	ther	Sampled	Weight		
0	Chert Sample Hentification	Date	Three	2	ž	1.	1	3	E.	\$	3	Ŧ	3	ŧ	Type !	(Usits)	ConcreatlyMent D	
4	0103LINCST200_SSC				_	N									G			
									_	_		_						
ŝ												_						
				-														
1			1.1															
1																		
1			1.1				1											
1				-		-												
ō						-			-		-					-		
Ť	Reinensked De	Dile	Time.	-	-	- 10	nekinsi	Byi		-	D	die .	ni				Lati Use Only:	
5	e Farook	11.8	12:00 F	-		ŋ	NRU	-		-	11	18	12	:04	🗆 Shippe	# Via:	er Dickent drag (4, c)	
1	0.000000			-	-	-	1.48	N		-	_	_	1.5	51. S	Dyidence		Tes [□ No - Temp (*C). 0, 0	
31	65 Ø II	10.110	10.00															
-34	MR4	1113	12:34		29	65					118	122	110	38	2916Did-5		CC C1 Net:	

1 - Sample Type Goden: Vegetation (V- ; Notleten (1) ; Dermit/Concentrate (0) ; Dermit/Topical (1) ; Definite (0) ; Ser renge (0)

Resplo advance/or C-backs Educe and a state read water contrast as agreement for excision lease and/or set in the current area of an excision in advance of the current area of a state of the current area of the current area of a state of the current area of a state of the current area of a state of the current area of These and Manager, Mod Page of Perficed 0837230

Page 4 of 8
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Test results results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

Report Number:	22-013731/D002.R000
Report Date:	11/15/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	11/08/22 12:38

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

JAOAC2015 V986	6				B	atch ID: 2209	9668		
_aboratory Control	Sample								
Analyte	LCS	Result	Spike	Units	% Rec	Limit	ts	Evaluation	Notes
CEDVA	2	0.110	0.101	%	109	80.0 -	120	Acceptable	
CBDV	2	0.118	0.110	%	108	80.0 -	120	Acceptable	
CEE	2	0.111	0.102	%	109	80.0 -	120	Acceptable	
CBDA	1	0.0952	0.096	%	98.8	90.0 -	110	Acceptable	
CBGA	1	0.0944	0.095	%	99.1	80.0 -	120	Acceptable	
CBG	1	0.101	0.101	%	99.6	80.0 -	120	Acceptable	
CBD	1	0.0972	0.099	%	98.6	90.0 -	110	Acceptable	
THCV	2	0.114	0.106	%	108	80.0 -	120	Acceptable	
18THCV	2	0.115	0.106	%	109	80.0 -	120	Acceptable	
IHCVA	2	0.108	0.099	%	109	80.0 -	120	Acceptable	
CBN	1	0.105	0.104	%	100	90.0 -	110	Acceptable	
exo-THC	2	0.112	0.103	%	108	80.0 -	120	Acceptable	
JHTC	1	0.104	0.102	%	101	90.0 -	110	Acceptable	
18THC	1	0.103	0.104	%	98.7	90.0 -	110	Acceptable	
CBL	2	0.109	0.097	%	112	80.0 -	120	Acceptable	
d10THC	1	0.0915	0.091	%	100	80.0 -	120	Acceptable	
CBC	2	0.117	0.107	%	108	80.0 -	120	Acceptable	
IHCA	1	0.0959	0.097	%	99.3	90.0 -	110	Acceptable	
CBCA	2	0.111	0.103	%	108	80.0 -	120	Acceptable	
CBLA	2	0.113	0.105	%	108	80.0 -	120	Acceptable	
CBL	2	0.117	0.108	%	109	80.0 -	120	Acceptable	
Method Blank									
Analyte		Result	LOQ		Uhits	Limit		Evaluation	Notes
CBDVA		LOQ	0.077		%	< 0.07		Acceptable	
CEDV		LOQ	0.077		%	< 0.07		Acceptable	
CE		LOQ	0.077		%	< 0.07		Acceptable	
CBDA		LOQ	0.077		%	< 0.07		Acceptable	
CBGA		LOQ	0.077		%	< 0.07		Acceptable	
CEG		LOQ	0.077		%	< 0.07		Acceptable	
CBD THCV		LOQ	0.077	I	%	< 0.07		Acceptable	
		LOQ	0.077	I	%	< 0.07		Acceptable	
		LOQ	0.077		%	< 0.07		Acceptable	
THCVA CBN		10Q	0.077	I	%	< 0.07		Acceptable	
CBN exo-THC		LOQ LOQ	0.077	<u> </u>	%	< 0.07		Acceptable	
d9THC		100 100	0.077		%	< 0.07		Acceptable Acceptable	
19 IHC 18 THC		100 100	0.077	I	%	< 0.07			
		100 100	0.077		%	< 0.07		Acceptable Acceptable	
סר			0.077		%	< 0.07		Acceptable	
			0.077		%	< 0.07		Acceptable	
10THC		100				< 0.07	1		
CBC	<	LOQ				1007	7		
d10THC CBC THCA	<	LOQ	0.077		%	< 0.07		Acceptable	
CBL d101HC CBC THCA CBCA CBCA CBLA	<					< 0.07 < 0.07 < 0.07	7	Acceptable Acceptable Acceptable	

s ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ- Limit of Quartitation

Units of Measure: %- Percent

Page 5 of 8
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Test results results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
prior arrangements have been made.

Report Number:	22-013731/D002.R000
Report Date:	11/15/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	11/08/22 12:38

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

JAOAC2015 V986	Batch ID: 2209668													
Sample Duplicate	Sample ID: 22-0097500004													
Analyte	Result	Org. Reult	LOQ	Units	RFD	Limits	Evaluation	Notes						
CEDVA	0.396	0.419	0.077	%	5.74	< 20	Acceptable							
CEDV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CÆ	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBDA	73.8	74.1	0.077	%	0.438	< 20	Acceptable							
CBGA	0.413	0.413	0.077	%	0.0001	< 20	Acceptable							
CBG	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBD	5.78	6.00	0.077	%	3.72	< 20	Acceptable							
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBN	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
d8THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable							

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ- Limit of Quartitation

Units of Measure:

Page 6 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

Report Number:	22-013731/D002.R000
Report Date:	11/15/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	11/08/22 12:38

Page 7 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

Report Number: 22-013731/D002.R000 **Report Date:** 11/15/2022 **ORELAP#:** OR100028 **Purchase Order:** 11/08/22 12:38 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Page 8 of 8 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Customer:	IHC LLC
Product identity:	01LIR209_SSC
Client/Metrc ID:	
Laboratory ID:	22-012621-0001

Summary

Analyte	Result (%)			
CBD-A	60.2	CBD-A	CBD-Total	56.4%
CBD	3.59	 CBD CBC-A 		
CBC-A	2.89	• THC-A	THC-Total	3.27%
THC-A	2.51	CBG-A		
CBG-A	1.13	Δ9-THC	(Reported in pe	rcent of total sample)
∆9-THC	1.07	CBDV-A		
CBDV-A	0.429	CBC		
CBC	0.411	• CBG		
CBG	0.168	 CBDV 		
CBDV	0.0756			

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Terpenes:

Analyte	Percent by weight	Percent of Total	Analyte	Percent by weight	Percent of Total
ß-Myrcene	2.43	30.68%	B-Caryophyllene	1.27	16.04%
Terpinolene	0.902	11.39%	Humulene	0.699	8.83%
a-pinene	0.557	7.03%	(R)-(+)-Limonene	0.508	6.41%
a-Bisabolol	0.342	4.32%	(-)-B-Pinene	0.230	2.90%
(-)-Guaiol	0.227	2.87%	trans-B-Ocimene	0.199	2.51%
Linalool	0.156	1.97%	(-)-caryophyllene oxide	0.0991	1.25%
(-)-a-Terpineol	0.0748	0.94%	(+)-fenchol	0.0578	0.73%
a-phellandrene	0.0477	0.60%	a-Terpinene	0.0364	0.46%
gamma-Terpinene	0.0269	0.34%	(+)-Borneol	0.0249	0.31%
d-3-Carene	0.0241	0.30%	cis-ß-Ocimene	0.0109	0.14%
Total Terpenes	7.92	100.00%			

Metals:

Less than LOQ for all analytes.

 www.columbialaboratories.com
 Page 1 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with:
 OAR 333-007-0430

IHC LLC

.

No

12.3 °C

Ramos

825 NW 16th Ave Portland Oregon 97209

01LIR209_SSC

22-012621-0001

United States of America (USA)

Customer:

Product identity:

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Sample Results

Potency	Method: J AOAC 201	5 V98-6 (mod	d) ^p Units %	Batch: 2208955	Analyze: 10/19/22	10:44:00 P
Analyte	As Dry	LOQ	Notes			
	Received weigh					CBD-A
CBC	0.411	0.0755				CBD
CBC-A	2.89	0.0755				CBC-A
CBC-Total	2.95	0.142				THC-A CBG-A
CBD	3.59	0.0755				 Δ9-THC
CBD-A	60.2	0.755				CBDV-A
CBD-Total	56.4	0.738				CBC
CBDV	0.0756	0.0755				CBG
CBDV-A	0.429	0.0755				CBDV
CBDV-Total	0.447	0.141				
CBE	< LOQ	0.0755				
CBG	0.168	0.0755				
CBG-A	1.13	0.0755				
CBG-Total	1.16	0.141				
CBL	< LOQ	0.0755				
CBL-A	< LOQ	0.0755				
CBL-Total	< LOQ	0.142				
CBN	< LOQ	0.0755				
CBT	< LOQ	0.0755				
$\Delta 10$ -THC	< LOQ	0.0755				
∆8-THC	< LOQ	0.0755				
∆8-THCV	< LOQ	0.0755				
∆9-THC	1.07	0.0755				
exo-THC	< LOQ	0.0755				
THC-A	2.51	0.0755				
THC-Total	3.27	0.142				
THCV	< LOQ	0.0755				
THCV-A	< LOQ	0.0755				
THCV-Total	< LOQ	0.141				
Total Cannabinoids	72.5					

www.columbialaboratories.com

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

22-012621/D002.R000 **Report Number: Report Date:** 10/25/2022 **ORELAP#:** OR100028 **Purchase Order:** Received: 10/18/22 14:20

Solvents	Method:	Residua	I Solve	ents by	GC/MS ^p	Units µg/g Batch 2	209018	Analyz	e 10/2	21/22 1	11:10 AM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	< LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
lsopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	< LOQ		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	< LOQ	2170	600	pass	

 www.columbialaboratories.com
 Page 3 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

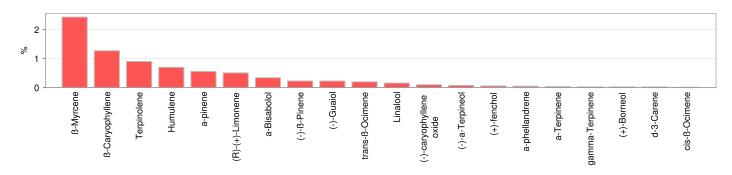
 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Pesticides	Method: AO	AC 200	7.01 & EN 156	62 (mod) ^þ	Units mg/kg Batch	2208988	Analy	ze 10/21/22 08:26 AM
Analyte	Result	Limits	S LOQ Status	Notes	Analyte	Result	Limits	s LOQ Status Notes
Abamectin [¥]	< LOQ	0.50	0.250 pass		Acephate [¥]	< LOQ	0.40	0.250 pass
Acequinocyl [¥]	< LOQ	2.0	1.00 pass		Acetamiprid¥	< LOQ	0.20	0.100 pass
Aldicarb [¥]	< LOQ	0.40	0.200 pass		Azoxystrobin [¥]	< LOQ	0.20	0.100 pass
Bifenazate¥	< LOQ	0.20	0.100 pass		Bifenthrin¥	< LOQ	0.20	0.100 pass
Boscalid [¥]	< LOQ	0.40	0.200 pass		Carbaryl [¥]	< LOQ	0.20	0.100 pass
Carbofuran [¥]	< LOQ	0.20	0.100 pass		Chlorantraniliprole [¥]	< LOQ	0.20	0.100 pass
Chlorfenapyr¥	< LOQ	1.0	0.500 pass		Chlorpyrifos [¥]	< LOQ	0.20	0.100 pass
Clofentezine [¥]	< LOQ	0.20	0.100 pass		Cyfluthrin [¥]	< LOQ	1.0	0.500 pass
Cypermethrin [¥]	< LOQ	1.0	0.500 pass		Daminozide¥	< LOQ	1.0	0.500 pass
Diazinon¥	< LOQ	0.20	0.100 pass		Dichlorvos¥	< LOQ	1.0	0.500 pass
Dimethoate¥	< LOQ	0.20	0.100 pass		Ethoprophos [¥]	< LOQ	0.20	0.100 pass
Etofenprox [¥]	< LOQ	0.40	0.200 pass		Etoxazole¥	< LOQ	0.20	0.100 pass
Fenoxycarb [¥]	< LOQ	0.20	0.100 pass		Fenpyroximate [¥]	< LOQ	0.40	0.200 pass
Fipronil [¥]	< LOQ	0.40	0.200 pass		Flonicamid [¥]	< LOQ	1.0	0.400 pass
Fludioxonil [¥]	< LOQ	0.40	0.200 pass		Hexythiazox¥	< LOQ	1.0	0.400 pass
Imazalil [¥]	< LOQ	0.20	0.100 pass		Imidacloprid [¥]	< LOQ	0.40	0.200 pass
Kresoxim-methyl [¥]	< LOQ	0.40	0.200 pass		Malathion¥	< LOQ	0.20	0.100 pass
Metalaxyl [¥]	< LOQ	0.20	0.100 pass		Methiocarb¥	< LOQ	0.20	0.100 pass
Methomyl [¥]	< LOQ	0.40	0.200 pass		MGK-264¥	< LOQ	0.20	0.100 pass
Myclobutanil¥	< LOQ	0.20	0.100 pass		Naled [¥]	< LOQ	0.50	0.250 pass
Oxamyl [¥]	< LOQ	1.0	0.500 pass		Paclobutrazole¥	< LOQ	0.40	0.200 pass
Parathion-Methyl [¥]	< LOQ	0.20	0.200 pass		Permethrin [¥]	< LOQ	0.20	0.100 pass
Phosmet [¥]	< LOQ	0.20	0.100 pass		Piperonyl butoxide [¥]	< LOQ	2.0	1.00 pass
Prallethrin¥	< LOQ	0.20	0.200 pass		Propiconazole¥	< LOQ	0.40	0.200 pass
Propoxur [¥]	< LOQ	0.20	0.100 pass		Pyrethrin I (total)¥	< LOQ	1.0	0.500 pass
Pyridaben¥	< LOQ	0.20	0.100 pass		Spinosad [¥]	< LOQ	0.20	0.100 pass
Spiromesifen¥	< LOQ	0.20	0.100 pass		Spirotetramat¥	< LOQ	0.20	0.100 pass
Spiroxamine [¥]	< LOQ	0.40	0.200 pass		Tebuconazole [¥]	< LOQ	0.40	0.200 pass
Thiacloprid¥	< LOQ	0.20	0.100 pass		Thiamethoxam¥	< LOQ	0.20	0.100 pass
Trifloxystrobin¥	< LOQ	0.20	0.100 pass					

 www.columbialaboratories.com
 Page 4 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.


 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

22-012621/D002.R000 **Report Number: Report Date:** 10/25/2022 **ORELAP#:** OR100028 **Purchase Order: Received:** 10/18/22 14:20

Terpenes	Method:	J AOAC	2015 V98-6		Units % Batch	2209027	Analy	ze 10/20/22 1	0:14 PM
Analyte	Result	LOQ	% of Total	Notes	Analyte	Result	LOQ	% of Total	Notes
B-Myrcene	2.43	0.018	30.68%		B-Caryophyllene	1.27	0.018	16.04%	
Terpinolene	0.902	0.018	11.389%		Humulene	0.699	0.018	8.826%	
a-pinene	0.557	0.018	7.033%		(R)-(+)-Limonene	0.508	0.018	6.414%	
a-Bisabolol	0.342	0.018	4.318%		(-)-B-Pinene	0.230	0.018	2.904%	
-)-Guaiol	0.227	0.018	2.866%		trans-B-Ocimene	0.199	0.012	2.513%	
inalool	0.156	0.018	1.970%		(-)-caryophyllene oxide	e 0.0991	0.018	1.2513%	
-)-a-Terpineol	0.0748	0.018	0.9444%		(+)-fenchol	0.0578	0.018	0.7298%	
a-phellandrene	0.0477	0.018	0.6023%		a-Terpinene	0.0364	0.018	0.4596%	
amma-Terpinene	0.0269	0.018	0.3396%		(+)-Borneol	0.0249	0.018	0.3144%	
I-3-Carene	0.0241	0.018	0.3043%		p-Cymene	< LOQ	0.018	0.00%	
Camphene	< LOQ	0.018	0.00%		(±)-fenchone	< LOQ	0.018	0.00%	
sis-B-Ocimene	0.0109	0.006	0.1376%		Geraniol	< LOQ	0.018	0.00%	
Sabinene hydrate	< LOQ	0.018	0.00%		Sabinene	< LOQ	0.018	0.00%	
±)-Camphor	< LOQ	0.018	0.00%		Eucalyptol	< LOQ	0.018	0.00%	
-)-Isopulegol	< LOQ	0.018	0.00%		(+)-Pulegone	< LOQ	0.018	0.00%	
soborneol	< LOQ	0.018	0.00%		(+)-Cedrol	< LOQ	0.018	0.00%	
±)-cis-Nerolidol	< LOQ	0.018	0.00%		(±)-trans-Nerolidol	< LOQ	0.018	0.00%	
-cedrene	< LOQ	0.018	0.00%		farnesene	< LOQ	0.018	0.00%	
Geranyl acetate	< LOQ	0.018	0.00%		Menthol	< LOQ	0.018	0.00%	
erol	< LOQ	0.018	0.00%		valencene	< LOQ	0.018	0.00%	
otal Terpenes	7.92								

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Arsenic	< LOQ	0.200	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^p	pass
Cadmium	< LOQ	0.200	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass
Lead	< LOQ	0.500	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass
Mercury	< LOQ	0.100	mg/kg	0.0426	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass

www.columbialaboratories.com

www.couldinblataboratories.com Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

. .

 Report Number:
 22-012621/D002.R000

 Report Date:
 10/25/2022

 ORELAP#:
 OR100028

 Purchase Order:
 10/18/22 14:20

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

^b = ISO/IEC 17025:2017 accredited method.

^{*} = TNI accredited analyte.

Units of Measure

μg/g = Microgram per gram mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = μg/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 6 of 17

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

6	
A A A	Mit via more centress.

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Control # CF023 Rev 02/24/1021 Eff: 03/04/20/21 ORELAP ID: OR100018

the Hemo Colle	CT.			-	-		Are y	is Rec	ust	ed .					O Number	
Compart: The Hemp Collect Contact: Kyleistichenempcollect.com Dest 431 NW Flancers st Dire Montand State OF 76, 97205 2 Email Results: dropbox (IHC) 8 (01) 508164 C in Results () 8 (01) 508164 C in Results ()		97209	a - OR 59 controunds	stroke MAN Parabar - 379 compounds		daud Solvents	Mithers & weaks Activity		Fourt and Model	Acros: 6.00A and 1 ot al Coldanna	Metrik			Pro Cuttors Seport 1	Net Nerse Reporting: In State - [] W and time.	ELTING or C Column 5 Business Day Statuteral Tarmsround 8 Basiness Day Rash Tarmsround* 2 Dealtons City, Rash Tarmsround* "Clock for environment
Direct Savgle Hen Pratian 01LUR209_\$\$C	Date	Time	Pedicides-	Periode	Porturney	12	Multine	anata.	Manac Ti	Mirror E.	HOURS M	Mycologie	Dther	Sample Type 1	Wright (Unita)	Comments/Marie: ID
			X		×	×		x								
Releasthelly	Ilate .	Title		-	21	caliyez) i	W.			(D)	10	The	et:			Life Une Celly:
vle Farook		12.00 F		53-				10-19	.n	n	5	D Shipper		es D Na - Temp (*C): _12 -3		
J2	B 13.21	1538				A	ŧ.		-	101	1	14:5	0	Sample to	good condition	res (2.96) - Temp 10; (2.6 - 5 re (2.96) (2.96) 20 (2.96) (2.97) 20 (2.96) (2.96)

ON DAY COST. By righting "Multiplication" you one optically to alone to Nihitakar Way P. (300).356-2764 (Aux (MIN) 254-1457 Page____eff A 43248 infumerum statest or a see

www.columbialaboratories.com

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

J AOAC 2015 V98	-6				В	atch ID:	22089	55		
aboratory Contr	ol Sample									
Analyte	LCS	Result	Spike	Units	% Rec		Limits		Evaluation	Notes
CBDVA	2	0.102	0.101	%	101	80.0	-	120	Acceptable	
CBDV	2	0.111	0.110	%	101	80.0	-	120	Acceptable	
CBE	2	0.104	0.102	%	102	80.0	-	120	Acceptable	
CBDA	1	0.0989	0.100	%	98.5	90.0	-	110	Acceptable	
CBGA	1	0.0996	0.101	%	99.0	80.0	-	120	Acceptable	
CBG	1	0.104	0.103	%	101	80.0	-	120	Acceptable	
CBD	1	0.104	0.103	%	101	90.0	-	110	Acceptable	
THCV	2	0.106	0.106	%	100	80.0	-	120	Acceptable	
d8THCV	2	0.108	0.106	%	102	80.0	-	120	Acceptable	
THCVA	2	0.100	0.099	%	101	80.0	-	120	Acceptable	
CBN	1	0.102	0.101	%	101	90.0	-	110	Acceptable	
exo-THC	2	0.104	0.103	%	101	80.0	-	120	Acceptable	
d9THC	1	0.107	0.104	%	103	90.0	-	110	Acceptable	
d8THC	1	0.107	0.100	%	106	90.0	-	110	Acceptable	
CBL	2	0.0976	0.097	%	101	80.0	-	120	Acceptable	
d10THC	1	0.0956	0.096	%	99.9	80.0	-	120	Acceptable	
CBC	2	0.110	0.107	%	102	80.0	-	120	Acceptable	
THCA	1	0.0971	0.099	%	97.6	90.0	-	110	Acceptable	
CBCA	2	0.103	0.103	%	100	80.0		120	Acceptable	
CBLA	2	0.105	0.105	%	101	80.0	-	120	Acceptable	
СВТ	2	0.109	0.108	%	102	80.0	-	120	Acceptable	
Method Blank	-	-								
Analyte		lesult	LOQ	-	Units		Limits		Evaluation	Notes
CBDVA		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	
CBDV		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	
CBE		LOQ	0.077		%		0.077		Acceptable	
CBDA		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	
CBGA		LOQ	0.077		%		0.077		Acceptable	
CBG		LOQ	0.077	_	%		0.077		Acceptable	
CBD THCV		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	
		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	
d8THCV		LOQ	0.077		%		0.077		Acceptable	
THCVA CBN		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td></td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%				Acceptable	
END-THC		<loq <1.00</loq 	0.077		%		0.077		Acceptable Acceptable	
d9THC				<u> </u>						
		<loq <1.00</loq 	0.077		%		0.077		Acceptable Acceptable	
CBL		<loq <loq< td=""><td>0.077</td><td><u> </u></td><td>%</td><td></td><td>0.077</td><td></td><td></td><td></td></loq<></loq 	0.077	<u> </u>	%		0.077			
LBL 110THC		<loq <loq< td=""><td>0.077</td><td><u> </u></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable Acceptable</td><td></td></loq<></loq 	0.077	<u> </u>	%		0.077		Acceptable Acceptable	
		100	0.077		%		0.077			
ТНСА		<loq <loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<></loq 	0.077		%		0.077		Acceptable	
CBCA		<loq <loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<></loq 	0.077		%		0.077		Acceptable	
CBLA		(LOQ)	0.077	<u> </u>	%		0.077		Acceptable Acceptable	
CBT		<loq< td=""><td>0.077</td><td></td><td>%</td><td></td><td>0.077</td><td></td><td>Acceptable</td><td></td></loq<>	0.077		%		0.077		Acceptable	

s ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure: % - Percent

Page 8 of 17
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Tester exception of the samples are consented of the samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

			La	boratory	Quality Con	trol Results		
J AOAC 2015 V98-6					Ba	tch ID: 2208955		
Sample Duplicate					Sam	ple ID: 22-012332 -	-0001-01	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDV	0.166	0.164	0.077	%	1.10	< 20	Acceptable	
CBE	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBGA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBG	0.0938	0.0923	0.077	%	1.67	< 20	Acceptable	
CBD	32.3	32.1	0.077	%	0.653	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBN	0.177	0.174	0.077	%	1.81	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBC	0.250	0.248	0.077	%	0.873	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBT	0.397	0.394	0.077	%	0.890	< 20	Acceptable	

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Units of Measure:

Page 9 of 17
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Tester exception of the samples are consented of the samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

		•		ality Contro							
AOAC 2007.1 & EN 15662		Units	: mg/Kg			Ba	Batch ID: 2208988				
Method Blank				Laboratory Cont							
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Lim		Note		
Abamectin	0.000	< 0.250		0.969	1.000	96.9	50.0	150			
cephate	0.041	< 0.250		1.009	1.000	100.9	60.0	120			
kcequinocyl	0.000	< 1.000		3.674	4.000	91.8	40.0	160			
cetamiprid	0.000	< 0.100		0.398	0.400	99.5	60.0	120			
ldicarb	0.000	< 0.200		0.771	0.800	96.3	60.0	120			
Azoxystrobin	0.000	< 0.100		0.387	0.400	96.8	60.0	120			
Bifenazate	0.000	< 0.100		0.332	0.400	83.1	60.0	120			
Bifenthrin	0.000	< 0.100		0.380	0.400	95.1	50.0	150			
Boscalid	0.000	< 0.200		0.777	0.800	97.1	60.0	120			
Carbaryl	0.000	< 0.100		0.391	0.400	97.7	60.0	120	•		
Carbofuran	0.000	< 0.100		0.387	0.400	96.6	60.0	120	•		
Chlorantraniliprole	0.000	< 0.100		0.400	0.400	100.1	60.0	120			
Chlorfenapyr	0.000	< 0.500	-	1.843	2.000	92.2	60.0	120	•		
Chlorpyrifos	0.000	< 0.100		0.377	0.400	94.2	60.0	120	•		
Clofentezine	0.000	< 0.100		0.391	0.400	97.7	60.0	120			
Cyfluthrin	0.000	< 0.500	-	1.855	2.000	92.8	50.0	150			
Cypermethrin	0.000	< 0.500	-	1.948	2.000	97.4	50.0	150			
Daminozide	0.000	< 0.500		1.948	2.000	99.7	60.0	120			
Diazinon	0.000	< 0.100		0.391	0.400	99.7	60.0	120			
Dichlorvos	0.000	< 0.100	_	1.917	2.000	97.9	60.0	120			
Dimethoate	0.000	< 0.100	_	0.402	0.400	100.4	60.0	120			
			-								
thoprophos	0.000	< 0.100		0.391	0.400	97.7	60.0	120	-		
tofenprox	0.000	< 0.200		0.764	0.800	95.5	50.0	150	-		
toxazole	0.000	< 0.100		0.371	0.400	92.7	60.0	120			
enoxycarb	0.000	< 0.100		0.397	0.400	99.3	60.0	120			
enpyroximate	0.000	< 0.200		0.770	0.800	96.2	60.0	120			
ipronil	0.000	< 0.200		0.800	0.800	100.0	60.0	120			
lonicamid	0.000	< 0.250		1.062	1.000	106.2	60.0	120			
ludioxonil	0.000	< 0.200		0.746	0.800	93.3	50.0	150			
lexythiazox	0.000	< 0.250		0.925	1.000	92.5	60.0	120			
mazalil	0.000	< 0.100		0.362	0.400	90.4	60.0	120			
midacloprid	0.000	< 0.200		0.801	0.800	100.2	60.0	120			
Kresoxim-methyl	0.000	< 0.200		0.807	0.800	100.8	60.0	120			
Valathion	0.000	< 0.100		0.391	0.400	97.8	60.0	120	•		
Vetalaxyl	0.000	< 0.100		0.397	0.400	99.2	60.0	120	•		
Vethiocarb	0.000	< 0.100		0.389	0.400	97.3	60.0	120	•		
Vethomyl	0.000	< 0.200		0.792	0.800	99.0	60.0	120	•		
//GK-264	0.000	< 0.100	-	0.376	0.400	94.0	50.0	150	•		
Vyclobutanil	0.000	< 0.100	-	0.400	0.400	100.1	60.0	120	•		
Valed	0.000	< 0.250		0.970	1.000	97.0	50.0	150	•		
Dxamyl	0.000	< 0.500		2.076	2.000	103.8	60.0	120	•		
Paclobutrazole	0.000	< 0.200		0.778	0.800	97.2	60.0	120	•		
Parathion-Methyl	0.000	< 0.200	-	0.896	0.800	112.0	50.0	150			
Permethrin	0.000	< 0.100		0.373	0.400	93.3	50.0	150			
Phosmet	0.000	< 0.100		0.373	0.400	93.3	50.0	150			
						98.1	60.0	150			
Piperonyl butoxide	0.000	< 0.500		1.931	2.000						
Prallethrin	0.000	< 0.100		0.392	0.400	97.9	60.0	120			
ropiconazole	0.000	< 0.200	1	0.792	0.800	99.0	60.0	120			
ropoxur	0.000	< 0.100		0.393	0.400	98.2	60.0	120	-		
yrethrin (Summe)	0.000	< 0.100	1	0.396	0.413	95.9	60.0	120	-		
yridaben	0.000	< 0.100	1	0.384	0.400	95.9	50.0	150			
pinosad	0.000	< 0.100		0.367	0.388	94.6	50.0	150			
piromesifen	0.000	< 0.100		0.382	0.400	95.5	60.0	120			
pirotetramat	0.000	< 0.100		0.390	0.400	97.6	60.0	120			
piroxamine	0.000	< 0.200	1	0.775	0.800	96.9	60.0	120			
ebuconazole	0.000	< 0.200		0.813	0.800	101.6	60.0	120			
Thiacloprid	0.000	< 0.100	1	0.400	0.400	100.0	60.0	120			
hiamethoxam	0.000	< 0.100	1	0.428	0.400	106.9	60.0	120			
Trifloxystrobin	0.000	< 0.100	1	0.386	0.400	96.5	60.0	120	•		

Laboratory Pesticide Quality Control Results

 www.columbialaboratories.com
 Page 10 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

AOAC 2007.1 & EN 15662			Units:	mg/Kg				Bat	ch ID: 220898	8
Matrix Spike/Matrix Spike	Duplicate Reco	veries					Sample ID:	22-012342-0	0001	
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes
Abamectin	0.000	0.861	0.824	1.000	4.5%	< 30	86.1%	82.4%	50 - 150	
Acephate	0.000	1.040	1.023	1.000	1.6%	< 30	104.0%	102.3%	50 - 150	-
Acequinocyl	0.000	3.139	3.216	4.000	2.4%	< 30	78.5%	80.4%	50 - 150	-
Acetamiprid	0.000	0.410	0.395	0.400	3.6%	< 30	102.4%	98.8%	50 - 150	-
Aldicarb	0.000	0.793	0.782	0.800	1.4%	< 30	99.1%	97.7%	50 - 150	-
Azoxystrobin	0.000	0.388	0.385	0.400	0.8%	< 30	96.9%	96.1%	50 - 150	-
Bifenazate	0.000	0.442	0.434	0.400	1.8%	< 30	110.6%	108.6%	50 - 150	-
Bifenthrin	0.000	0.311	0.327	0.400	4.8%	< 30	77.8%	81.6%	50 - 150	-
Boscalid	0.000	0.804	0.824	0.800	2.4%	< 30	100.6%	103.0%	50 - 150	-
Carbaryl	0.000	0.404	0.374	0.400	7.6%	< 30	100.9%	93.5%	50 - 150	-
Carbofuran	0.000	0.401	0.383	0.400	4.6%	< 30	100.4%	95.8%	50 - 150	-
Chlorantraniliprole	0.000	0.420	0.395	0.400	6.3%	< 30	105.1%	98.7%	50 - 150	-
Chlorfenapyr	0.000	1.855	2.383	2.000	24.9%	< 30	92.7%	119.2%	50 - 150	-
Chlorpyrifos	0.011	0.459	0.425	0.400	7.8%	< 30	112.0%	103.5%	50 - 150	-
Clofentezine	0.000	0.397	0.382	0.400	3.8%	< 30	99.2%	95.5%	50 - 150	-
Cyfluthrin	0.000	0.790	0.709	2.000	10.8%	< 30	39.5%	35.5%	30 - 150	-
Cypermethrin	0.000	0.785	0.733	2.000	6.9%	< 30	39.2%	36.6%	50 - 150	Q
Daminozide	0.000	2.164	2.141	2.000	1.1%	< 30	108.2%	107.0%	30 - 150	-
Diazinon	0.000	0.351	0.342	0.400	2.7%	< 30	87.7%	85.4%	50 - 150	-
Dichlorvos	0.000	2.090	1.907	2.000	9.2%	< 30	104.5%	95.3%	50 - 150	-
Dimethoate	0.000	0.413	0.398	0.400	3.6%	< 30	103.2%	99.6%	50 - 150	-
Ethoprophos	0.000	0.407	0.402	0.400	1.2%	< 30	101.7%	100.5%	50 - 150	-
Etofenprox	0.000	0.712	0.726	0.800	1.9%	< 30	89.1%	90.8%	50 - 150	-
Etoxazole	0.000	0.362	0.359	0.400	0.9%	< 30	90.6%	89.8%	50 - 150	-
Fenoxycarb	0.000	0.406	0.400	0.400	1.3%	< 30	101.4%	100.1%	50 - 150	-
Fenpyroximate	0.000	0.419	0.445	0.800	6.0%	< 30	52.4%	55.7%	50 - 150	-
Fipronil	0.000	0.779	0.717	0.800	8.2%	< 30	97.3%	89.7%	50 - 150	-
Flonicamid	0.000	1.046	1.063	1.000	1.7%	< 30	104.6%	106.3%	50 - 150	-
Fludioxonil	0.000	0.847	0.851	0.800	0.4%	< 30	105.9%	106.3%	50 - 150	-
Hexythiazox	0.000	1.012	0.961	1.000	5.3%	< 30	101.2%	96.1%	50 - 150	-
Imazalil	0.000	0.400	0.397	0.400	0.9%	< 30	100.0%	99.1%	50 - 150	-
Imidacloprid	0.000	0.829	0.816	0.800	1.5%	< 30	103.6%	102.0%	50 - 150	-
Kresoxim-methyl	0.000	0.831	0.796	0.800	4.3%	< 30	103.9%	99.5%	50 - 150	-
Malathion	0.000	0.400	0.396	0.400	1.1%	< 30	100.0%	99.0%	50 - 150	-
Metalaxyl	0.000	0.400	0.400	0.400	0.2%	< 30	100.1%	99.9%	50 - 150	-
Methiocarb	0.000	0.398	0.380	0.400	4.4%	< 30	99.4%	95.1%	50 - 150	-
Methomyl	0.000	0.785	0.785	0.800	0.1%	< 30	98.1%	98.2%	50 - 150	-
MGK-264	0.000	0.398	0.389	0.400	2.3%	< 30	99.5%	97.2%	50 - 150	-
Myclobutanil	0.000	0.395	0.349	0.400	12.6%	< 30	98.9%	87.1%	50 - 150	-
Naled	0.000	0.973	0.911	1.000	6.6%	< 30	97.3%	91.1%	50 - 150	-
Oxamyl	0.000	2.053	2.023	2.000	1.4%	< 30	102.6%	101.2%	50 - 150	
Paclobutrazole	0.000	0.802	0.779	0.800	2.9%	< 30	100.3%	97.4%	50 - 150	-
Parathion-Methyl	0.000	0.891	0.733	0.800	19.4%	< 30	111.4%	91.7%	30 - 150	-
Permethrin	0.000	0.330	0.313	0.400	5.3%	< 30	82.6%	78.3%	50 - 150	-
Phosmet	0.000	0.398	0.398	0.400	0.1%	< 30	99.5%	99.6%	50 - 150	-
Piperonyl butoxide	0.000	1.814	1.806	2.000	0.4%	< 30	90.7%	90.3%	50 - 150	-
Prallethrin	0.000	0.521	0.514	0.400	1.5%	< 30	130.3%	128.4%	50 - 150	-
Propiconazole	0.000	0.963	0.920	0.800	4.6%	< 30	120.4%	115.0%	50 - 150	-
Propoxur	0.000	0.425	0.380	0.400	11.1%	< 30	106.2%	95.0%	50 - 150	-
Pyrethrin (Summe)	0.000	0.382	0.394	0.413	2.9%	< 30	92.6%	95.3%	50 - 150	-
Pyridaben	0.000	0.430	0.415	0.400	3.4%	< 30	107.4%	103.8%	50 - 150	_
Spinosad	0.000	0.327	0.320	0.388	2.4%	< 30	84.4%	82.4%	50 - 150	-
Spiromesifen	0.000	0.402	0.406	0.400	1.0%	< 30	100.5%	101.5%	50 - 150	-
Spirotetramat	0.000	0.430	0.437	0.400	1.8%	< 30	107.4%	109.3%	50 - 150	-
Spiroxamine	0.000	0.784	0.785	0.800	0.1%	< 30	98.0%	98.1%	50 - 150	-
Tebuconazole	0.000	0.799	0.811	0.800	1.5%	< 30	99.8%	101.3%	50 - 150	-
Thiacloprid	0.000	0.400	0.390	0.400	2.5%	< 30	99.9%	97.4%	50 - 150	-
Thiamethoxam	0.000	0.380	0.441	0.400	14.8%	< 30	94.9%	110.1%	50 - 150	-
Trifloxystrobin	0.000	0.370	0.359	0.400	3.1%	< 30	92.5%	89.7%	50 - 150	-

Laboratory Pesticide Quality Control Results

Page 11 of 17
<u>www.columbialaboratories.com</u> Page 11 of 17
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

	la	horaton	/ Ouali	ty Contro	ol Results			Logacy		. 01	L-L,	33Effective:
Residual Solvents		borator	Quui	cy contro	ornesures	Bat	ch ID:	220903	18			
Method Blank					Laborator	y Control Sa	amplo					
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec		Lim	ite	Notes
Propane	ND	<	200	Notes	588	572	μg/g	70 Rec 102.8			120	NOLES
Isobutane	ND	<	200		786	731	μg/g	102.8	60		120	
Butane	ND	<	200		762	731	μg/g	107.3	60		120	
2,2-Dimethylpropane	ND	<	200		1070	936	μg/g	104.2	60		120	
Methanol	ND		200		1920	1650	не/ с µg/g	114.5	60		120	
Ethylene Oxide	ND	<	30		58.2	56.2	μg/g	103.6	60		120	
2-Methylbutane	ND	<	200		1770	1650	μg/g	103.0	60		120	
Pentane	ND	<	200		1800	1650	μg/g	107.3	60		120	
Ethanol	ND	<	200		1900	1660	μg/g	105.1	70		130	
Ethyl Ether	ND	<	200		1850	1630	μg/g	114.5	60		120	
2,2-Dimethylbutane	ND	<	30		204	1030	μg/g	113.5	60		120	
Acetone	ND	<	200		1890	1650		107.5	60		120	
2-Propanol	ND	<	200		1890	1650	µg/g	114.5	60		120	
Ethyl Formate	ND	<	500		1890	1650	µg/g	82.0	70		120	
Acetonitrile	ND	<	100		593	504	µg/g	82.0	60		130	l
Methyl Acetate	ND	<	500		1650	1630	µg/g µg/g	101.2	70		120	l
2,3-Dimethylbutane	ND	<	30		1050	1050		101.2	60		120	l
2,3-Dimethylbutane Dichloromethane	ND	<	30 60		582	521	µg/g	109.8	60		120	l
	ND	<	30		203	521	µg/g	111.7	60		120	l
2-Methylpentane MTBE	ND		30 500		203	187	µg/g	108.6	60 70		120 130	l
	ND	<	30		211	1600	µg/g	99.4	60		130	
3-Methylpentane	ND	~	30				µg/g	112.2			120	
Hexane					213	182	µg/g		60			
1-Propanol	ND	<	500		1620	1610	µg/g	100.6	70		130	
Methylethylketone	ND	<	500		1630	1600	µg/g	101.9	70		130	
Ethyl acetate	ND	<	200 200		1910 1890	1630	µg/g	117.2	60		120 120	
2-Butanol	ND	<				1630	µg/g	116.0	60			
Tetrahydrofuran	ND	<	100		560	506	µg/g	110.7	60		120	
Cyclohexane	ND	<	200		1810	1640	µg/g	110.4	60		120	
2-methyl-1-propanol	ND	<	500		1510	1620	µg/g	93.2	70		130	
Benzene	ND	<	1		5.45	4.93	µg/g	110.5	60		120	
Isopropyl Acetate	ND	<	200		1900	1640	µg/g	115.9	60		120	
Heptane	ND	<	200		1650	1630	µg/g	101.2	60		120	
1-Butanol	ND	<	500		1550	1600	µg/g	96.9	70		130	
Propyl Acetate	ND	<	500		1680	1620	µg/g	103.7	70		130	
1,4-Dioxane	ND	<	100		554	493	µg/g	112.4	60		120	
2-Ethoxyethanol	ND	<	30		208	171	µg/g	121.6	60		120	Q1
Methylisobutylketone	ND	<	500		1520	1620	µg/g	93.8	70		130	
3-Methyl-1-butanol	ND	<	500		1540	1610	µg/g	95.7	70		130	
Ethylene Glycol	ND	<	200		603	494	µg/g	122.1	60		120	Q1
Toluene	ND	<	100		558	506	µg/g	110.3	60		120	l
Isobutyl Acetate	ND	<	500		1590	1620	µg/g	98.1	70		130	
1-Pentanol	ND	<	500		1470	1610	µg/g	91.3	70		130	
Butyl Acetate	ND	<	500		1500	1610	µg/g	93.2	70		130	
Ethylbenzene	ND	<	200		1100	996	µg/g	110.4	60		120	l
m,p-Xylene	ND	<	200		1100	1010	µg/g	108.9	60		120	l
o-Xylene	ND	<	200		1030	979	µg/g	105.2	60		120	
Cumene	ND	<	30		193	188	µg/g	102.7	60		120	
Anisole	ND	<	500		1400	1610	µg/g	87.0	70		130	
DMSO	ND	<	500		1410	1600	µg/g	88.1	70		130	l
1,2-dimethoxyethane	ND	<	50		185	190	µg/g	97.4	70		130	
Triethylamine	ND	<	500		1500	1610	µg/g	93.2	70		130	
N,N-dimethylformamide	ND	<	150		431	496	µg/g	86.9	70		130	
N,N-dimethylacetamide	ND	<	150		447	483	µg/g	92.5	70		130	
Pyridine	ND	<	50		150	167	µg/g	89.8	70		130	
Sulfolane	ND	<	50		131	161	µg/g	81.4	70		130	
1,2-Dichloroethane	ND	<	1		0.975	1	µg/g	97.5	70		130	
Chloroform	ND	<	1		0.969	1	µg/g	96.9	70		130	
Trichloroethylene	ND	<	1		0.933	1	µg/g	93.3	70		130	
1,1-Dichloroethane	ND	<	1		0.977	1	μg/g	97.7	70	-	130	

 www.columbialaboratories.com
 Page 12 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

						Revision	: 2 Document ID: 7087
						Legacy	ID: CFL-E33Effective:
QC - Sample Duplicate						22-012342-0001	
Analyte	Result	Org. Result	LOQ Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30 μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200 µg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200 µg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100 µg/g	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	60 μg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
MTBE	ND	ND	500 μg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200 µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100 µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200 µg/g	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100 µg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Methylisobutylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	100 µg/g	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200 µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200 µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200 µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30 µg/g	0.0	< 20	Acceptable	
Anisole	ND	ND	500 μg/g	0.0	< 20	Acceptable	_
DMSO	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,2-dimethoxyethane	ND	ND	50 μg/g	0.0	< 20	Acceptable	
Triethylamine	ND	ND	500 µg/g	0.0	< 20	Acceptable	
N,N-dimethylformamide	ND	ND	150 µg/g	0.0	< 20	Acceptable	
N,N-dimethylacetamide	ND	ND	150 µg/g	0.0	< 20	Acceptable	
Pyridine	ND	ND	50 μg/g	0.0	< 20	Acceptable	
Sulfolane	ND	ND	50 μg/g	0.0	< 20	Acceptable	
1,2-Dichloroethane	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Chloroform	ND	ND	1 µg/g	0.0	< 20	Acceptable	
Trichloroethylene	ND	ND	1 µg/g	0.0	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL

Units of Measure: µg/g- Microgram per gram or ppm

RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Q1 - Quality control result biased high. Only non-detect samples reported.

Page 13 of 17
www.columbialaboratories.com
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Test results results are used to the samples are used to the samples are used to the samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 1 Document ID: 7086 Legacy ID: CFL-E57Worksheet Validated 11/04/2020

DQ		200 200 200 200 200 200 200	423 397 414 406 386	ry Control LCS 500 500 500 500 500	Sample Units µg/g µg/g µg/g µg/g	LCS % Rec 85% 79% 83%	Limits 70 - 130 70 - 130 70 - 130 70 - 130	7 Notes
DQ		200 200 200 200 200 200 200	Result 423 397 414 406 386	LCS 500 500 500 500	Units μg/g μg/g μg/g	LCS % Rec 85% 79% 83%	70 - 130 70 - 130	Notes
DQ		200 200 200 200 200 200 200	423 397 414 406 386	500 500 500 500	μg/g μg/g μg/g	85% 79% 83%	70 - 130 70 - 130	Notes
DQ -		200 200 200 200 200 200	397 414 406 386	500 500 500	μg/g μg/g	79% 83%	70 - 130	
DQ -		200 200 200 200	414 406 386	500 500	µg/g	83%		
DQ - DQ -		200 200 200	406	500			70 - 130	
DQ -		200	386		µg/g	040/	1.2 130	
		200		EOO		81%	70 - 130	
	< 2		202	500	μg/g	77%	70 - 130	
	< 2	200	382	500	µg/g	76%	70 - 130	
		200	367	500	μg/g	73%	70 - 130	
		200	415	500	μg/g	83%	70 - 130	
DQ ·	< 2	200	380	500	µg/g	76%	70 - 130	
	< 2	200	416	500	μg/g	83%	70 - 130	
	< 2	200	374	500	μg/g	75%	70 - 130	
DQ ·	<	67	125	167	μg/g	75%	70 - 130	
DQ ·	< 1	133	266	333	μg/g	80%	70 - 130	
DQ ·	< 2	200	392	500	µg/g	78%	70 - 130	
DQ ·	< 2	200	390	500	μg/g	78%	70 - 130	
DQ ·	< 2	200	401	500	μg/g	80%	70 - 130	
DQ ·	< 2	200	400	500	μg/g	80%	70 - 130	
DQ ·	< 2	200	434	500	μg/g	87%	70 - 130	
DQ ·	< 2	200	397	500	μg/g	79%	70 - 130	
DQ ·	< 2	200	356	500	µg/g	71%	70 - 130	
DQ ·	< 2	200	375	500	µg/g	75%	70 - 130	
DQ ·	< 2	200	367	500	μg/g	73%	70 - 130	
DQ ·	< 2	200	399	500		80%	70 - 130	
DQ ·	< 2	200	363	500		73%	70 - 130	
DQ ·	< 2	200	404	500		81%	70 - 130	
DQ ·	< 2	200	435	500		87%	70 - 130	
DQ ·	< 2	200	422	500		84%	70 - 130	
DQ ·	< 2	200	494	500		99%	70 - 130	
DQ ·	< 2	200	386	500		77%	70 - 130	
DQ ·	< 2	200	383	500		77%	70 - 130	
DQ ·	< 2	200	356	500		71%	70 - 130	
DQ ·	< 2	200	400	500		80%	70 - 130	
DQ ·	< 2	200	351	500	µg/g	70%	70 - 130	
			436	500		87%	70 - 130	
DQ ·			405	500		81%	70 - 130	
DQ ·	_		440	500		88%	70 - 130	
			399	500		80%	70 - 130	
			414	500		83%	70 - 130	
JQ ·			375				70 - 130	
	DQ - DQ -	DQ <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Definitions

LOQ Limit of Quantitation LCS Laboratory Control Sample

% REC

Percent Recovery

 www.columbialaboratories.com
 Page 14 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

Revision: 1 Document ID: 7086 Legacy ID: CFL-E57Worksheet Validated 11/04/2020

	Ter	penes Quality Cont	rol Result	S			
Method Reference: E	PA 5035				Batch	n ID: 220902	7
Sample/Sample Dupli	cate		Sar	nple ID:	22-012621-0	001	
Analyte	Result	Org. Result	LOQ	Units	% RPD	LIMIT	Notes
a-pinene	5550	5570	184	μg/g	0%	< 20	
Camphene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
Sabinene	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
b-Pinene	2290	2300	184	µg/g	0%	< 20	
b-Myrcene	24400	24300	184	µg/g	0%	< 20	
a-phelllandrene	463	477	184	µg/g	3%	< 20	
d-3-Carene	248	241	184	µg/g	3%	< 20	
a-Terpinene	378	364	184	μg/g	4%	< 20	
p-Cymene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
D-Limonene	5110	5080	184	μg/g	1%	< 20	
Eucalyptol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
b-cis-Ocimene	103	109	61.3	μg/g	6%	< 20	
b-trans-Ocimene	2000	1990	123	µg/g	1%	< 20	
g-Terpinene	273	269	184	μg/g	1%	< 20	
Sabinene_Hydrate	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
Terpinolene	9110	9020	184	μg/g	1%	< 20	
D-Fenchone	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
Linalool	1590	1560	184	μg/g	2%	< 20	
Fenchol	600	578	184	μg/g	4%	< 20	
Camphor	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Isopulego	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Isoborneol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
Borneol	253	249	184	μg/g	2%	< 20	
DL-Menthol	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Terpineol	759	748	184	μg/g	1%	< 20	
Nerol	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Pulegone	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Gereniol	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
Geranyl_Acetate	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
a-Cedrene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
b-Caryophyllene	12900	12700	184	µg/g	2%	< 20	
a-Humulene	7090	6990	184	µg/g	1%	< 20	
Valenene	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
cis-Nerolidol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
a-Farnesene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
trans-Nerolidol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20	
Caryophyllene_Oxide	1050	991	184	µg/g	6%	< 20	
Guaiol	2340	2270	184	µg/g	3%	< 20	
Cedrol	<loq< td=""><td><loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>µg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	µg/g	0%	< 20	
a-Bisabolol	3490	3420	184	µg/g	2%	< 20	

Definitions RPD

Relative Percent Difference

 www.columbialaboratories.com
 Page 15 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

Report Number:	22-012621/D002.R000
Report Date:	10/25/2022
ORELAP#:	OR100028
Purchase Order:	
Received:	10/18/22 14:20

 www.columbialaboratories.com
 Page 16 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

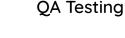
22-012621/D002.R000 **Report Number: Report Date:** 10/25/2022 **ORELAP#:** OR100028 **Purchase Order:** 10/18/22 14:20 **Received:**

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

 www.columbialaboratories.com
 Page 17 of 17

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.


 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410
 OAR 333-007-0430

SD230329-008 page 1 of 2

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

sample 03DTST224_AMBER_D8 Distillate

Sample ID SD230329-008 (71349) Matrix Concentrate (Inhalable Cannabis Good)

Tested for The Hemp Collect Sampled -Received Mar 28, 2023 Analyses executed CAN+, RES, MIBIG, MTO, PES, HME, FVI

Reported Apr 05, 2023

Laboratory note: The estimated concentration of the unknown peak in the sample is 660% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or d9-THC. At this time there are no reference standards available for (+)d8-THC, (+)d8-THC is a different compound from the main (-)d8-THC cannobinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC and d9-THC is problematic for the scientific community as a whole. PhormLabs believes the unidentified peak to be a combination of (+)d8-THC with the majority, if not all, of the concentration being (+)d8-THC. Total (+/-) D8 Concentration is estimated to be 94.56%.

CAN+ - Cannabinoids Analysis

Analyzed Apr 04, 2023 | Instrument HPLC-VWD | Method SOP-001 The expanded Uncertainty of the Cannabinoid analysis is approximately **#.806%** at the 95% Confidence Level

The expanded oncertainty of the cannabilitia analysis is approximately 3.000% at the 35% connuence Level				
Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	94.56	945.60
Cannabicyclol (CBL)	0.002	0.16	ND	ND
Cannabichromene (CBC)	0.002	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Total THC (THCa * 0.877 + Δ9THC)			ND	ND
Total THC + Δ 8THC (THCa * 0.877 + Δ 9THC + Δ 8THC)			94.56	945.60
Total CBD (CBDa * 0.877 + CBD)			ND	ND
Total CBG (CBGa * 0.877 + CBG)			ND	ND
Total Cannabinoids			94.56	945.60

HME - Heavy Metals Detection Analysis

Analyzed Apr 04, 2023 | Instrument ICP/MSMS | Method SOP-005

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Arsenic (As)	0.0002	0.0005	ND	0.2	Cadmium (Cd)	3.0e-05	0.0005	ND	0.2
Mercury (Hg)	1.0e-05	0.0001	ND	0.1	Lead (Pb)	1.0e-05	0.00125	ND	0.5

MIBIG - Microbial Testing Analysis

Analyzed Mar 31, 2023 | Instrument qPCR and/or Plating | Method SOP-007

Analyte	Result CFU/g	Limit	Analyte	Result CFU/g	Limit
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram
Aspergillus niger	ND	ND per 1 gram	Aspergillus terreus	ND	ND per 1 gram

MTO - Mycotoxin Testing Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS | Method SOP-004

Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg	Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Wed, 05 Apr 2023 10:13:00 -0700

PharmLabs San Diego | 3421 Hancock St, Second Floor, San Diego, CA 92110 | 619.356.0898 | ISO/IEC 17025:2017 Certification L17-427-1 "This report shall not be reproduced except in full, without the written approval of the lab. This report is for informational purposes only and should not be used to diagnose, treat or prevent any disease. Results are only for samples and batches indicated. Results are reported on an "as received" basis, unless indicated otherwise. When a Pass/Fall status is reported, that status is intended to be in accordance with federal, state and local lows which are required for the customer to be in compliance. The measurement of uncertainty is not included in the Pass/Fall evolution unless explicition unless expliciting, state or local lows and has been reported on the retrificate of analysis. Ressurement of uncertainty is available upon request.

SD230329-008 page 2 of 2

QA Testing

PES - Pesticides Screening Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS GC/MSMS | Method SOP-003

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Aldicarb	0.0078	0.02	ND	0.0078	Carbofuran	0.01	0.02	ND	0.01
Dimethoate	0.01	0.02	ND	0.01	Etofenprox	0.02	0.1	ND	0.02
Fenoxycarb	0.01	0.02	ND	0.01	Thiachloprid	0.01	0.02	ND	0.01
Daminozide	0.01	0.03	ND	0.01	Dichlorvos	0.02	0.07	ND	0.02
Imazalil	0.02	0.07	ND	0.02	Methiocarb	0.01	0.02	ND	0.01
Spiroxamine	0.01	0.02	ND	0.01	Coumaphos	0.01	0.02	ND	0.01
Fipronil	0.01	0.1	ND	0.01	Paclobutrazol	0.01	0.03	ND	0.01
Chlorpyrifos	0.01	0.04	ND	0.01	Ethoprophos (Prophos)	0.01	0.02	ND	0.01
Baygon (Propoxur)	0.01	0.02	ND	0.01	Chlordane	0.04	0.1	ND	0.04
Chlorfenapyr	0.03	0.1	ND	0.03	Methyl Parathion	0.02	0.1	ND	0.02
Mevinphos	0.03	0.08	ND	0.03	Abamectin	0.03	0.08	ND	0.1
Acephate	0.02	0.05	ND	0.1	Acetamiprid	0.01	0.05	ND	0.1
Azoxystrobin	0.01	0.02	ND	0.1	Bifenazate	0.01	0.05	ND	0.1
Bifenthrin	0.02	0.35	ND	3	Boscalid	0.01	0.03	ND	0.1
Carbaryl	0.01	0.02	ND	0.5	Chlorantraniliprole	0.01	0.04	ND	10
Clofentezine	0.01	0.03	ND	0.1	Diazinon	0.01	0.02	ND	0.1
Dimethomorph	0.02	0.06	ND	2	Etoxazole	0.01	0.05	ND	0.1
Fenpyroximate	0.02	0.1	ND	0.1	Flonicamid	0.01	0.02	ND	0.1
Fludioxonil	0.01	0.05	ND	0.1	Hexythiazox	0.01	0.03	ND	0.1
Imidacloprid	0.01	0.05	ND	5	Kresoxim-methyl	0.01	0.03	ND	0.1
Malathion	0.01	0.05	ND	0.5	Metalaxyl	0.01	0.02	ND	2
Methomyl	0.02	0.05	ND	1	Myclobutanil	0.02	0.07	ND	0.1
Naled	0.01	0.02	ND	0.1	Oxamyl	0.01	0.02	ND	0.5
Permethrin	0.01	0.02	ND	0.5	Phosmet	0.01	0.02	ND	0.1
Piperonyl Butoxide	0.02	0.06	ND	3	Propiconazole	0.03	0.08	ND	0.1
Prallethrin	0.02	0.05	ND	0.1	Pyrethrin	0.05	0.41	ND	0.5
Pyridaben	0.02	0.07	ND	0.1	Spinosad A	0.01	0.05	ND	0.1
Spinosad D	0.01	0.05	ND	0.1	Spiromesifen	0.02	0.06	ND	0.1
Spirotetramat	0.01	0.02	ND	0.1	Tebuconazole	0.01	0.02	ND	0.1
Thiamethoxam	0.01	0.02	ND	5	Trifloxystrobin	0.01	0.02	ND	0.1
Acequinocyl	0.02	0.09	ND	0.1	Captan	0.01	0.02	ND	0.7
Cypermethrin	0.02	0.1	ND	1	Cyfluthrin	0.04	0.1	ND	2
Fenhexamid	0.02	0.07	ND	0.1	Spinetoram J,L	0.02	0.07	ND	0.1
Pentachloronitrobenzene	0.01	0.1	ND	0.1					

RES - Residual Solvents Testing Analysis

Analyzed Apr 04, 2023 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Propane (Prop)	0.4	40.0	ND	5000.0	Butane (But)	0.4	40.0	ND	5000.0
Methanol (Metha)	0.4	40.0	ND	3000.0	Ethylene Oxide (EthOx)	0.4	0.8	ND	1.0
Pentane (Pen)	0.4	40.0	ND	5000.0	Ethanol (Ethan)	0.4	40.0	ND	5000.0
Ethyl Ether (EthEt)	0.4	40.0	ND	5000.0	Acetone (Acet)	0.4	40.0	ND	5000.0
Isopropanol (2-Pro)	0.4	40.0	ND	5000.0	Acetonitrile (Acetonit)	0.4	40.0	ND	410.0
Methylene Chloride (MetCh)	0.4	0.8	1.0	1.0	Hexane (Hex)	0.4	40.0	ND	290.0
Ethyl Acetate (EthAc)	0.4	40.0	ND	5000.0	Chloroform (Clo)	0.4	0.8	ND	1.0
Benzene (Ben)	0.4	0.8	ND	1.0	1-2-Dichloroethane (12-Dich)	0.4	0.8	ND	1.0
Heptane (Hep)	0.4	40.0	ND	5000.0	Trichloroethylene (TriClEth)	0.4	0.8	ND	1.0
Toluene (Toluene)	0.4	40.0	ND	890.0	Xylenes (Xyl)	0.4	40.0	ND	2170.0

FVI - Filth & Foreign Material Inspection Analysis

Analyzed Mar 30, 2023 | Instrument Microscope | Method SOP-010

Analyte / Limit	Result	Analyte / Limit	Result
>1/4 of the total sample area covered by sand, soil, cinders, or dirt	ND	> 1/4 of the total sample area covered by mold	ND
>1 insect fragment, 1 hair, or 1 count mammalian excreta per 3g	ND	> 1/4 of the total sample area covered by an imbedded foreign material	ND

UI Not Identified ND Not Detected NA Not Applicable NT Not Reported LOD Limit of Detection LOQ Limit of Quantification <LOQ Detected NUCU. Above upper limit of linearity >ULCU. Above upper limit of linearity CFU/Q colony forming Units per 1 gram TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Wed, 05 Apr 2023 10:13:00 -0700

PharmLabs San Diego | 3421 Hancock St, Second Floor, San Diego, CA 92110 | 619.356.0898 | ISO/IEC 17025:2017 Certification L17-427-1 This report shall not be reproduced except in full, without the written approval of the lab. This report is for informational purposes only and should not be used to diagnose, treat or prevent any disease. Results are only for samples and batches indicated. Results are reported on an "os received" basis, unless indicated otherwise. When a Pass/Fail status is reported, that status is intended to be in accordance with federal, state and local laws which are required for the customer to be in compliance. The measurement of uncertainty is not included in the Pass/Fail evolution unless explicitude, state or including and accordance with federal or should not be upon request.