

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/11/22 12:56

Customer: IHC LLC

Product identity: 0103LIRVAP200_SSC

Client/Metrc ID:

Laboratory ID: 22-012267-0001

Summary

Analyte	Result (%)			
Δ8-THC	74.3		CBD-Total	2.04%
CBD-A	2.13	 Δ8-THC 		
Δ8-THCV	0.256	• CBD-A	THC-Total	<loq< td=""></loq<>
CBT	0.233	Δ8-THCV		
CBD	0.171	CBT	(Reported in pe	rcent of total sample)
THC-A	0.0993	CBD		
		• THC-A		

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 ORELAP#: OR100028

Purchase Order:

10/11/22 12:56 Received:

COLLECT

Product identity: 0103LIRVAP200_SSC

IHC LLC

825 NW 16th Ave

Client/Metrc ID:

Sample Date:

Customer:

22-012267-0001 Laboratory ID:

Evidence of Cooling: No Temp: 10.4 Relinquished by: ramos

Sample Results

Potency	Method: J AOAC 2015	V98-6 (mod)	Units %	Batch: 2208718	Analyze: 10/13/22	12:46:00 A
Analyte	As Dry Received weigh		Notes			
CBC	< LOQ	0.0713				
CBC-A	< LOQ	0.0713				Δ8-THC
CBC-Total	< LOQ	0.134				O CBD-A
CBD	0.171	0.0713		1		Δ8-THCVCBT
CBD-A	2.13	0.0713				• CBD
CBD-Total	2.04	0.134				THC-A
CBDV	< LOQ	0.0713				
CBDV-A	< LOQ	0.0713				
CBDV-Total	< LOQ	0.133				
CBE	< LOQ	0.0713				
CBG	< LOQ	0.0713				
CBG-A	< LOQ	0.0713				
CBG-Total	< LOQ	0.133				
CBL	< LOQ	0.0713				
CBL-A	< LOQ	0.0713				
CBL-Total	< LOQ	0.134				
CBN	< LOQ	0.0713				
CBT	0.233	0.0713				
Δ10-THC	< LOQ	0.0713				
Δ8-THC	74.3	0.713				
Δ8-THCV	0.256	0.0713				
Δ9-THC	< LOQ	0.0713				
exo-THC	< LOQ	0.0713				
THC-A	0.0993	0.0713				
THC-Total	< LOQ	0.134				
THCV	< LOQ	0.0713				
THCV-A	< LOQ	0.0713				
THCV-Total	< LOQ	0.133				
Total Cannabinoids	77.2					

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/11/22 12:56

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

p = ISO/IEC 17025:2017 accredited method.

Units of Measure

% = Percentage of sample % wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

Report Number: 22-012267/D002.R000

THE-EMPLOCIECE 22-012387

Report Date: 10/18/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/11/22 12:56

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Control#: CP028 Rev 02/24/2021 EH: 03/04/2021 OREIAP IX: OR800088

F 30 14-200	and vince the						·A	naliya	s Rés	ueste	d			. 1		O Murebor:	***************************************
Company Contact: kyle@thehempcollect.com Recet: 431 NW Flanders st. City: Fortland State: UF 7p; 97209 Contact: droppoox (IHC) Contact: 431 NW Flanders st. City: Fortland State: UF 7p; 97209 Contact: City: Freelite: (a - Off 59 contpounds	Multi Residue – 379 campounds		that Scheens	S. Wetser Authory		Yeart and Model	tion: Footherd Total Californ	Foot and Total Coliform Metals.		2 Dusiness Day Rus		NETEC or [2] Other:			
D Clean Sarrate Ide	entification 200_SSC	Date	Time	Partiodes	Pedida	N PUCHU	Personal	Webure	Terpenes	Man 7e	White: F	Heavy M	Mycotoeiro	Other	Semple Type ii	Weight Canito	Connects/Metra ID
0103LIRVAP2	200_PPIne					×									C		
01LIR209_PF	ine			К	\vdash	Ж	Х					X:			C		
1					\vdash	Т											
5					†									П			
5																	
(0)																	1
3																	
9																	
10								1	- 1		- 1				1		
Relequired I	Sec.	Date	Time		1	7	resione.	lly:			th	te:	Tir	ne :			tall the Origin
Kyle Farook		10/4	4:00 P		4	2	1	-			10-	1)	11	42			or □ Clart drop Yes I □ Nor-Terry (YC) / Ø , ⊌q
33-		10.11	1210		t	85					16/	ļ7Z	n	56	Sample is	good conditi	tex [] Sea [[] No

*-Sample Type Codes: Vegetation (V); Inclates (S); Extract/Concentrate (C); Texture/Topical (T); Edible (C); Beverage (N)

Supplies and last for the control of Columbia Laboratoria and registerants controls on approximative to according to the control of the control of the COLUMBIA COLUM

22-012267/D002.R000 **Report Number:**

Report Date: 10/18/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/11/22 12:56

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

			Lai	oratory		ntrol Results		
J AOAC 2015 V98-6					В	atch ID: 2208718		
Laboratory Control Sa								<u>.</u>
Analyte	LCS	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDVA	2	0.112	0.103	%	109	80.0 - 120	Acceptable	
CBDV	2	0.121	0.110	%	110	80.0 - 120	Acceptable	
CBE	2	0.111	0.105	%	106	80.0 - 120	Acceptable	
CBDA	1	0.104	0.100	%	103	90.0 - 110	Acceptable	
CBGA	1	0.103	0.101	%	103	80.0 - 120	Acceptable	
CBG	1	0.107	0.103	%	104	80.0 - 120	Acceptable	
CBD	1	0.109	0.103	%	106	90.0 - 110	Acceptable	
THCV	2	0.124	0.113	%	110	80.0 - 120	Acceptable	
d8THCV	2	0.119	0.110	%	108	80.0 - 120	Acceptable	
THCVA	2	0.109	0.101	%	108	80.0 - 120	Acceptable	
CBN	1	0.106	0.101	%	105	90.0 - 110	Acceptable	
exo-THC	2	0.109	0.103	%	107	80.0 - 120	Acceptable	
d9THC	1	0.107	0.104	%	103	90.0 - 110	Acceptable	
d8THC	1	0.103	0.100	%	103	90.0 - 110	Acceptable	
CBL	2	0.113	0.099	%	115	80.0 - 120	Acceptable	
9S-HHC	3	0.104	0.100	%	104	80.0 - 120	Acceptable	
d10THC	1	0.101	0.096	%	105	80.0 - 120	Acceptable	
CBC	2	0.119	0.108	%	110	80.0 - 120	Acceptable	
9R-HHC	3	0.0995	0.100	%	99.5	80.0 - 120	Acceptable	
THCA	1	0.104	0.099	%	104	90.0 - 110	Acceptable	
CBCA	2	0.113	0.105	%	107	80.0 - 120	Acceptable	
CBLA	2	0.0604	0.056	%	108	80.0 - 120	Acceptable	
d8THCO	3	0.107	0.100	%	107	80.0 - 120	Acceptable	
CBT	2	0.121	0.112	%	109	80.0 - 120	Acceptable	
d9THCO	3	0.109	0.100	%	109	80.0 - 120	Acceptable	

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBDV	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBE	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBDA	<l0q< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></l0q<>	0.0077	%	< 0.0077	Acceptable	
CBGA	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBG	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBD	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
THCV	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
d8THCV	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
THCVA	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBN	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
exo-THC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
d9THC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
d8THC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBL	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
9S-HHC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
d10THC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
9R-HHC	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
THCA	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBCA	<l0q< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></l0q<>	0.0077	%	< 0.0077	Acceptable	
CBLA	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
d8THCO	<loq< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></loq<>	0.0077	%	< 0.0077	Acceptable	
CBT	<l0q< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></l0q<>	0.0077	%	< 0.0077	Acceptable	
d9THCO	<l0q< td=""><td>0.0077</td><td>%</td><td>< 0.0077</td><td>Acceptable</td><td></td></l0q<>	0.0077	%	< 0.0077	Acceptable	

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure: % - Percent

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/11/22 12:56

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results Batch ID: 2208718 Sample ID: 22-011223-0002 Analyte CBDVA CBDV Org. Result LOQ Units Evaluation Limits Acceptable Acceptable 0.077 < 20 < 20 % 0.384 3.36 0.397 CBDA 0.077 Acceptable Acceptable % % NA NA < 20 CBGA CBG 0.077 < 20 NA 4.49 Acceptable CBD 66.3 69.3 % 0.077 < 20 Acceptable Acceptable Acceptable Acceptable 0.077 < 20 THCVA 0.077 Acceptable Acceptable Acceptable Acceptable Acceptable 0.077 8.52 CBN 1.75 1.60 % < 20 < 20 0.077 < 20 d8THC NA NA CBL 9S-HHC 0.077 % < 20 Acceptable d10THC 0.077 Acceptable < 20 1.84 1.69 8.58 0.077 % < 20 Acceptable Acceptable % < 20 THCA 0.077 Acceptable CBCA Acceptable NA NA 7.68 < 20 < 20 < 20 Acceptable Acceptable Acceptable CBLA 0.077 d8THCO 0.077 2.54 2.35

d9THCO

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/11/22 12:56

Report Number: 22-012267/D002.R000

Report Date: 10/18/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/11/22 12:56

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/22 14:20

Customer: IHC LLC

Product identity: 01LIR209_SSC

Client/Metrc ID:

Laboratory ID: 22-012621-0001

Summary

Potency:

 al 56.4%
u 30.4 /0
al 3.27%
ed in percent of total sample)

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Terpenes:

Analyte	Percent by weight	Percent of Total	Analyte	Percent by weight	Percent of Total
ß-Myrcene	2.43	30.68%	ß-Caryophyllene	1.27	16.04%
Terpinolene	0.902	11.39%	Humulene	0.699	8.83%
a-pinene	0.557	7.03%	(R)-(+)-Limonene	0.508	6.41%
a-Bisabolol	0.342	4.32%	(-)-ß-Pinene	0.230	2.90%
(-)-Guaiol	0.227	2.87%	trans-ß-Ocimene	0.199	2.51%
Linalool	0.156	1.97%	(-)-caryophyllene oxide	0.0991	1.25%
(-)-a-Terpineol	0.0748	0.94%	(+)-fenchol	0.0578	0.73%
a-phellandrene	0.0477	0.60%	a-Terpinene	0.0364	0.46%
gamma-Terpinene	0.0269	0.34%	(+)-Borneol	0.0249	0.31%
d-3-Carene	0.0241	0.30%	cis-ß-Ocimene	0.0109	0.14%
Total Terpenes	7.92	100.00%			

Metals:

Less than LOQ for all analytes.

Page 1 of 17

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/22 14:20

Customer: IHC LLC

825 NW 16th Ave Portland Oregon 97209 United States of America (USA)

Product identity: 01LIR209_SSC

Client/Metrc ID:

Sample Date:

Laboratory ID: 22-012621-0001

Evidence of Cooling: No
Temp: 12.3 °C
Relinquished by: Ramos

Sample Results

Potency	Method: J AOAC 2019	5 V98-6 (mod) ^þ	Units %	Batch: 2208955	Analyze: 10/19/22	10:44:00 P
Analyte	As Dry Received weigh		lotes			CBD-A
CBC	0.411	0.0755				CBD
CBC-A	2.89	0.0755				CBC-A
CBC-Total	2.95	0.142				O THC-A
CBD	3.59	0.0755				CBG-AΔ9-THC
CBD-A	60.2	0.755				● CBDV-A
CBD-Total	56.4	0.738				• CBC
CBDV	0.0756	0.0755				CBG
CBDV-A	0.429	0.0755				CBDV
CBDV-Total	0.447	0.141				
CBE	< LOQ	0.0755				
CBG	0.168	0.0755				
CBG-A	1.13	0.0755				
CBG-Total	1.16	0.141				
CBL	< LOQ	0.0755				
CBL-A	< LOQ	0.0755				
CBL-Total	< LOQ	0.142				
CBN	< LOQ	0.0755				
CBT	< LOQ	0.0755				
$\Delta 10$ -THC	< LOQ	0.0755				
Δ8-THC	< LOQ	0.0755				
Δ8-THCV	< LOQ	0.0755				
Δ9-THC	1.07	0.0755				
exo-THC	< LOQ	0.0755				
THC-A	2.51	0.0755				
THC-Total	3.27	0.142				
THCV	< LOQ	0.0755				
THCV-A	< LOQ	0.0755				
THCV-Total	< LOQ	0.141				
Total Cannabinoids	72.5					

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

10/18/22 14:20 Received:

Solvents	Method:	Residual	Solve	ents by	GC/MS ^þ	Units µg/g Batch 2	209018	Analyz	e 10/2	21/22 1	1:10 AM
Analyte	Result	Limits I	LOQ :	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	< LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	< LOQ		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	< LOQ	2170	600	pass	

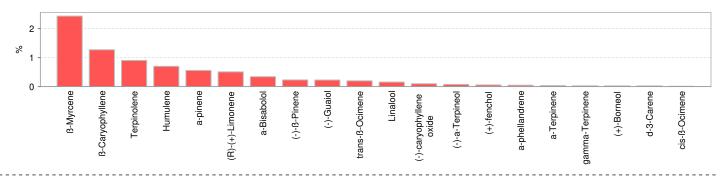
Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

10/18/22 14:20 Received:

Pesticides	Method: AO	AC 200	7.01 & EN 15662 (mod) ^b	Units mg/kg Batch	2208988	Analy	ze 10/21/22 08:26 AM
Analyte	Result	Limits	LOQ Status Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin [¥]	< LOQ	0.50	0.250 pass	Acephate [¥]	< LOQ	0.40	0.250 pass
Acequinocyl [¥]	< LOQ	2.0	1.00 pass	Acetamiprid [¥]	< LOQ	0.20	0.100 pass
Aldicarb¥	< LOQ	0.40	0.200 pass	Azoxystrobin [¥]	< LOQ	0.20	0.100 pass
Bifenazate¥	< LOQ	0.20	0.100 pass	Bifenthrin¥	< LOQ	0.20	0.100 pass
Boscalid [¥]	< LOQ	0.40	0.200 pass	Carbaryl¥	< LOQ	0.20	0.100 pass
Carbofuran¥	< LOQ	0.20	0.100 pass	Chlorantraniliprole*	< LOQ	0.20	0.100 pass
Chlorfenapyr¥	< LOQ	1.0	0.500 pass	Chlorpyrifos [¥]	< LOQ	0.20	0.100 pass
Clofentezine¥	< LOQ	0.20	0.100 pass	Cyfluthrin¥	< LOQ	1.0	0.500 pass
Cypermethrin [¥]	< LOQ	1.0	0.500 pass	Daminozide¥	< LOQ	1.0	0.500 pass
Diazinon¥	< LOQ	0.20	0.100 pass	Dichlorvos¥	< LOQ	1.0	0.500 pass
Dimethoate*	< LOQ	0.20	0.100 pass	Ethoprophos*	< LOQ	0.20	0.100 pass
Etofenprox¥	< LOQ	0.40	0.200 pass	Etoxazole¥	< LOQ	0.20	0.100 pass
Fenoxycarb¥	< LOQ	0.20	0.100 pass	Fenpyroximate [¥]	< LOQ	0.40	0.200 pass
Fipronil¥	< LOQ	0.40	0.200 pass	Flonicamid¥	< LOQ	1.0	0.400 pass
Fludioxonil¥	< LOQ	0.40	0.200 pass	Hexythiazox [¥]	< LOQ	1.0	0.400 pass
lmazalil [¥]	< LOQ	0.20	0.100 pass	Imidacloprid*	< LOQ	0.40	0.200 pass
Kresoxim-methyl¥	< LOQ	0.40	0.200 pass	Malathion¥	< LOQ	0.20	0.100 pass
Metalaxyl¥	< LOQ	0.20	0.100 pass	Methiocarb [¥]	< LOQ	0.20	0.100 pass
Methomyl¥	< LOQ	0.40	0.200 pass	MGK-264¥	< LOQ	0.20	0.100 pass
Myclobutanil¥	< LOQ	0.20	0.100 pass	Naled [¥]	< LOQ	0.50	0.250 pass
Oxamyl¥	< LOQ	1.0	0.500 pass	Paclobutrazole [¥]	< LOQ	0.40	0.200 pass
Parathion-Methyl [¥]	< LOQ	0.20	0.200 pass	Permethrin [¥]	< LOQ	0.20	0.100 pass
Phosmet [¥]	< LOQ	0.20	0.100 pass	Piperonyl butoxide [¥]	< LOQ	2.0	1.00 pass
Prallethrin [¥]	< LOQ	0.20	0.200 pass	Propiconazole [¥]	< LOQ	0.40	0.200 pass
Propoxur [¥]	< LOQ	0.20	0.100 pass	Pyrethrin I (total)¥	< LOQ	1.0	0.500 pass
Pyridaben [¥]	< LOQ	0.20	0.100 pass	Spinosad [¥]	< LOQ	0.20	0.100 pass
Spiromesifen¥	< LOQ	0.20	0.100 pass	Spirotetramat*	< LOQ	0.20	0.100 pass
Spiroxamine [¥]	< LOQ	0.40	0.200 pass	Tebuconazole*	< LOQ	0.40	0.200 pass
Thiacloprid¥	< LOQ	0.20	0.100 pass	Thiamethoxam [¥]	< LOQ	0.20	0.100 pass
Trifloxystrobin [¥]	< LOQ	0.20	0.100 pass				


22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Terpenes	Method:	J AOAC	2015 V98-6		Units % Batcl	n 2209027	Analy	ze 10/20/22	10:14 PN
Analyte	Result	LOQ	% of Total	Notes	Analyte	Result	LOQ	% of Total	Notes
ß-Myrcene	2.43	0.018	30.68%		B-Caryophyllene	1.27	0.018	16.04%	
Terpinolene	0.902	0.018	11.389%		Humulene	0.699	0.018	8.826%	
a-pinene	0.557	0.018	7.033%		(R)-(+)-Limonene	0.508	0.018	6.414%	
a-Bisabolol	0.342	0.018	4.318%		(-)-B-Pinene	0.230	0.018	2.904%	
(-)-Guaiol	0.227	0.018	2.866%		trans-B-Ocimene	0.199	0.012	2.513%	
Linalool	0.156	0.018	1.970%		(-)-caryophyllene oxid	de 0.0991	0.018	1.2513%	
(-)-a-Terpineol	0.0748	0.018	0.9444%		(+)-fenchol	0.0578	0.018	0.7298%	
a-phellandrene	0.0477	0.018	0.6023%		a-Terpinene	0.0364	0.018	0.4596%	
gamma-Terpinene	0.0269	0.018	0.3396%		(+)-Borneol	0.0249	0.018	0.3144%	
d-3-Carene	0.0241	0.018	0.3043%		p-Cymene	< LOQ	0.018	0.00%	
Camphene	< LOQ	0.018	0.00%		(±)-fenchone	< LOQ	0.018	0.00%	
cis-ß-Ocimene	0.0109	0.006	0.1376%		Geraniol	< LOQ	0.018	0.00%	
Sabinene hydrate	< LOQ	0.018	0.00%		Sabinene	< LOQ	0.018	0.00%	
(±)-Camphor	< LOQ	0.018	0.00%		Eucalyptol	< LOQ	0.018	0.00%	
(-)-Isopulegol	< LOQ	0.018	0.00%		(+)-Pulegone	< LOQ	0.018	0.00%	
Isoborneol	< LOQ	0.018	0.00%		(+)-Cedrol	< LOQ	0.018	0.00%	
(±)-cis-Nerolidol	< LOQ	0.018	0.00%		(±)-trans-Nerolidol	< LOQ	0.018	0.00%	
a-cedrene	< LOQ	0.018	0.00%		farnesene	< LOQ	0.018	0.00%	
Geranyl acetate	< LOQ	0.018	0.00%		Menthol	< LOQ	0.018	0.00%	
nerol	< LOQ	0.018	0.00%		valencene	< LOQ	0.018	0.00%	
Total Terpenes	7.92								

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Arsenic	< LOQ	0.200	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^þ	pass
Cadmium	< LOQ	0.200	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass
Lead	< LOQ	0.500	mg/kg	0.0852	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass
Mercury	< LOQ	0.100	mg/kg	0.0426	2209005	10/20/22 AOAC 2013.06 (mod.) ^b	pass

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/22 14:20

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

p = ISO/IEC 17025:2017 accredited method.

* = TNI accredited analyte.

Units of Measure

 $\mu g/g$ = Microgram per gram mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = $\mu g/g$ divided by 10,000

Approved Signatory

Derrick Tanner General Manager

Report Number: 22-012621/D002.R000

10/25/2022 **Report Date:** ORELAP#: OR100028

Purchase Order:

10/18/22 14:20 Received:

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Controlls: CF023 Rev 02/24/1021 Eff: 03/04/2021 ORBLAP IO: ORGODOM

The Hower Colley					-	- 2	bracy	is Req	uest	96		-		- 0	O Rumber	
Coverett: kyleistrenemmood Street: 431 NW Flanders s Obj. Portland State: Street: dropbox (III- Pit (01) 508164C Px Result			a - Off 59 (Ortpounds	Muth Residue - 379 compounds		chail Solvents	Witne & Webs Activity		Years and Mold	ima: E.Colvi antil Total Collebras	Metals			Proje Proje Custore Suport 1	et Homber:	
Client Savephy Iden Jication O1LJR209_SSC	Date	Time	Freiholden	Persola	Potency	2	Motore	Table 1	March 7	Meno: E	HERRY	Mycologes	Ditter	Sample Trote 1	Vergite (Utilia)	Comments/Water ID
			-	-	^	×		x	_	-	X	-	-	Ç		
							-		-		-	-	-			
	-	-		-				-	_							
					- 1			-	-		-		-	-		
								-	-	-		-				
															-	
Releashed by te Farook	Date -	Time .		-	> M	calysel is	Vi.			Det		Tie	it.			Lab Use Crely:
Color	10/18	12:00 F	No16-14 D3 D Campbed at Campbell													
952	A /1, 11	1338	8 Printered of cooling: Diver I Discover 12 to 12 to 14 to 15 to 1					C Vms C Mo								

22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

				В	atch ID: 2208955		
ample							
LCS	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
2	0.102	0.101	%	101	80.0 - 120	Acceptable	
2	0.111	0.110	%	101	80.0 - 120	Acceptable	
2	0.104	0.102	%	102	80.0 - 120	Acceptable	
1	0.0989	0.100	%	98.5	90.0 - 110	Acceptable	
1	0.0996	0.101	%	99.0	80.0 - 120	Acceptable	
1	0.104	0.103	%	101	80.0 - 120	Acceptable	
1	0.104	0.103	%	101	90.0 - 110	Acceptable	
2	0.106	0.106	%	100	80.0 - 120	Acceptable	
2	0.108	0.106	%	102	80.0 - 120	Acceptable	
2	0.100	0.099	%	101	80.0 - 120	Acceptable	
1	0.102	0.101	%	101	90.0 - 110	Acceptable	
2	0.104	0.103	%	101	80.0 - 120	Acceptable	
1	0.107	0.104	%	103	90.0 - 110	Acceptable	
1	0.107	0.100	%	106	90.0 - 110	Acceptable	
2	0.0976	0.097	%	101	80.0 - 120	Acceptable	
1	0.0956	0.096	%	99.9	80.0 - 120	Acceptable	
2	0.110	0.107	%	102	80.0 - 120	Acceptable	
1	0.0971	0.099	%	97.6	90.0 - 110	Acceptable	
2	0.103	0.103	%	100	80.0 - 120	Acceptable	
2	0.105	0.105	%	101		Acceptable	
2	0.109	0.108	%	102		Acceptable	
	2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2	LCS Result 2 0.102 2 0.111 2 0.104 1 0.0989 1 0.104 2 0.106 2 0.108 2 0.106 2 0.108 2 0.100 1 0.102 2 0.100 1 0.107 1 0.107 2 0.0956 1 0.0956 1 0.0956 2 0.110 1 0.0971 2 0.103 2 0.103	LCS Result Spike 2 0.102 0.101 2 0.111 0.110 2 0.104 0.102 1 0.0989 0.100 1 0.0996 0.101 1 0.104 0.103 1 0.104 0.103 2 0.106 0.106 2 0.108 0.106 2 0.100 0.099 1 0.102 0.101 2 0.104 0.103 1 0.107 0.104 1 0.107 0.104 1 0.0107 0.100 2 0.0976 0.097 1 0.0956 0.096 2 0.110 0.107 1 0.0971 0.099 2 0.110 0.103 2 0.103 0.103 2 0.100 0.105	LCS Result Spike Units 2 0.102 0.101 % 2 0.111 0.110 % 2 0.104 0.102 % 1 0.0989 0.100 % 1 0.0996 0.101 % 1 0.104 0.103 % 1 0.104 0.103 % 2 0.106 0.106 % 2 0.108 0.106 % 2 0.100 0.099 % 1 0.102 0.101 % 2 0.104 0.103 % 1 0.107 0.104 % 1 0.107 0.104 % 1 0.107 0.100 % 2 0.0976 0.097 % 1 0.0956 0.096 % 2 0.110 0.107 % 1 0.0971 0.099	Ample Spike Units % Rec 2 0.102 0.101 % 101 2 0.111 0.110 % 101 2 0.111 0.102 % 102 1 0.0989 0.100 % 98.5 1 0.0989 0.100 % 99.0 1 0.0996 0.101 % 99.0 1 0.104 0.103 % 101 2 0.106 0.106 % 100 2 0.108 0.106 % 102 2 0.100 0.099 % 101 1 0.102 0.101 % 102 2 0.100 0.099 % 101 1 0.102 0.101 % 103 1 0.102 0.101 % 103 1 0.107 0.104 % 103 1 0.107 0.10	Ample CCS Result Spike Units % Rec Limits 2 0.102 0.101 % 101 80.0 - 120 2 0.111 0.102 % 101 80.0 - 120 2 0.104 0.102 % 102 80.0 - 120 1 0.0989 0.100 % 98.5 90.0 - 110 1 0.0996 0.101 % 99.0 80.0 - 120 1 0.104 0.103 % 101 80.0 - 120 1 0.104 0.103 % 101 80.0 - 120 2 0.106 0.106 % 100 80.0 - 120 2 0.106 0.106 % 102 80.0 - 120 2 0.100 0.099 % 101 80.0 - 120 2 0.104 0.103 % 101 80.0 - 120	LCS Result Spike Units % Rec Limits Evaluation 2 0.102 0.101 % 101 80.0 - 120 Acceptable 2 0.114 0.102 % 101 80.0 - 120 Acceptable 2 0.104 0.102 % 102 80.0 - 120 Acceptable 1 0.0989 0.100 % 98.5 90.0 - 120 Acceptable 1 0.0989 0.101 % 99.0 80.0 - 120 Acceptable 1 0.0989 0.101 % 99.0 80.0 - 120 Acceptable 1 0.104 0.103 % 101 80.0 - 120 Acceptable 1 0.104 0.103 % 101 80.0 - 120 Acceptable 2 0.108 0.106 % 102 80.0 - 120 Acceptable 2 0.108 0.106

CDT	2 0.109	0.100	/0 1UZ	80.0 - 120	Acceptable	
Method Blank						
Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBDV	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBE	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBDA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBGA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBG	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBD	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
THCV	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
d8THCV	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
THCVA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBN	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
exo-THC	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
d9THC	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
d8THC	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBL	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
d10THC	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBC	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
THCA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBCA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBLA	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	
CBT	<loq< td=""><td>0.077</td><td>%</td><td>< 0.077</td><td>Acceptable</td><td></td></loq<>	0.077	%	< 0.077	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure: % - Percent

22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

10/18/22 14:20 Received:

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

J AOAC 2015 V98-6					Ba	tch ID: 2208955		
Sample Duplicate					Sam	ple ID: 22-012332	-0001-01	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDV	0.166	0.164	0.077	%	1.10	< 20	Acceptable	
CBE	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBGA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBG	0.0938	0.0923	0.077	%	1.67	< 20	Acceptable	
CBD	32.3	32.1	0.077	%	0.653	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBN	0.177	0.174	0.077	%	1.81	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBC	0.250	0.248	0.077	%	0.873	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBT	0.397	0.394	0.077	%	0.890	< 20	Acceptable	

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Units of Measure:

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662	Units: mg/Kg Batch ID: 2208988											
Method Blank	Laboratory Control Sample											
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Lim	its	Note			
Abamectin	0.000	< 0.250		0.969	1.000	96.9	50.0	150				
Acephate	0.041	< 0.250		1.009	1.000	100.9	60.0	120	=			
Acequinocyl	0.000	< 1.000		3.674	4.000	91.8	40.0	160	-			
Acetamiprid	0.000	< 0.100		0.398	0.400	99.5	60.0	120	-			
Aldicarb	0.000	< 0.200		0.771	0.800	96.3	60.0	120	-			
Azoxystrobin	0.000	< 0.100		0.387	0.400	96.8	60.0	120	-			
Bifenazate	0.000	< 0.100		0.332	0.400	83.1	60.0	120	-			
Bifenthrin	0.000	< 0.100		0.380	0.400	95.1	50.0	150	-			
Boscalid	0.000	< 0.200		0.777	0.800	97.1	60.0	120	-			
Carbaryl	0.000	< 0.100		0.391	0.400	97.7	60.0	120	-			
Carbofuran	0.000	< 0.100		0.387	0.400	96.6	60.0	120	-			
Chlorantraniliprole	0.000	< 0.100		0.400	0.400	100.1	60.0	120	-			
Chlorfenapyr	0.000	< 0.500		1.843	2.000	92.2	60.0	120	-			
Chlorpyrifos	0.000	< 0.100		0.377	0.400	94.2	60.0	120	-			
Clofentezine	0.000	< 0.100		0.391	0.400	97.7	60.0	120	=			
Cyfluthrin	0.000	< 0.500	1	1.855	2.000	92.8	50.0	150	=			
Cypermethrin	0.000	< 0.500	+	1.948	2.000	97.4	50.0	150	-			
Daminozide	0.000	< 0.500	+	1.994	2.000	99.7	60.0	120	-			
Diazinon	0.000	< 0.100	1	0.391	0.400	97.9	60.0	120	-			
Dichlorvos	0.000	< 0.500	1	1.917	2.000	95.8	60.0	120	-			
Dimethoate	0.000	< 0.100	1	0.402	0.400	100.4	60.0	120	-			
Ethoprophos	0.000	< 0.100		0.391	0.400	97.7	60.0	120	-			
Etofenprox	0.000	< 0.200		0.764	0.800	95.5	50.0	150	-			
Etoxazole	0.000	< 0.100		0.371	0.400	92.7	60.0	120	-			
Fenoxycarb	0.000			0.371	0.400	99.3	60.0	120	-			
		< 0.100			0.400	96.2			-			
Fenpyroximate	0.000	< 0.200		0.770			60.0	120	-			
Fipronil	0.000	< 0.200		0.800	0.800	100.0		120	-			
Flonicamid	0.000	< 0.250		1.062	1.000	106.2	60.0	120	_			
Fludioxonil	0.000	< 0.200		0.746	0.800	93.3	50.0	150	_			
Hexythiazox	0.000	< 0.250		0.925	1.000	92.5	60.0	120	_			
mazalil	0.000	< 0.100		0.362	0.400	90.4	60.0	120	_			
Imidacloprid	0.000	< 0.200		0.801	0.800	100.2	60.0	120				
Kresoxim-methyl	0.000	< 0.200		0.807	0.800	100.8	60.0	120	_			
Malathion	0.000	< 0.100		0.391	0.400	97.8	60.0	120	_			
Metalaxyl	0.000	< 0.100		0.397	0.400	99.2	60.0	120				
Methiocarb	0.000	< 0.100		0.389	0.400	97.3	60.0	120				
Methomyl	0.000	< 0.200		0.792	0.800	99.0	60.0	120				
MGK-264	0.000	< 0.100		0.376	0.400	94.0	50.0	150	-			
Myclobutanil	0.000	< 0.100		0.400	0.400	100.1	60.0	120	=			
Naled	0.000	< 0.250		0.970	1.000	97.0	50.0	150	=			
Oxamyl	0.000	< 0.500		2.076	2.000	103.8	60.0	120	=			
Paclobutrazole	0.000	< 0.200	1	0.778	0.800	97.2	60.0	120	-			
Parathion-Methyl	0.000	< 0.200	1	0.896	0.800	112.0	50.0	150	=			
Permethrin	0.000	< 0.100	1	0.373	0.400	93.3	50.0	150	=			
Phosmet	0.000	< 0.100	1	0.392	0.400	98.1	50.0	150	-			
Piperonyl butoxide	0.000	< 0.500	1	1.931	2.000	96.6	60.0	120	-			
Prallethrin	0.000	< 0.100	1	0.392	0.400	97.9	60.0	120	-			
Propiconazole	0.000	< 0.200	1	0.792	0.800	99.0	60.0	120	=			
Propoxur	0.000	< 0.100	1	0.393	0.400	98.2	60.0	120	-			
Pyrethrin (Summe)	0.000	< 0.100	+	0.396	0.413	95.9	60.0	120	-			
Pyridaben	0.000	< 0.100	1	0.384	0.400	95.9	50.0	150	-			
Spinosad	0.000	< 0.100	1	0.367	0.388	94.6	50.0	150	-			
Spiromesifen	0.000	< 0.100	+	0.382	0.400	95.5	60.0	120	-			
Spiromesiren	0.000	< 0.100	1	0.382	0.400	95.5	60.0	120	-			
'			1						-			
Spiroxamine	0.000	< 0.200	<u> </u>	0.775	0.800	96.9	60.0	120	-			
Tebuconazole	0.000	< 0.200	1	0.813	0.800	101.6	60.0	120	-			
Thiacloprid	0.000	< 0.100		0.400	0.400	100.0	60.0	120				
Thiamethoxam	0.000	< 0.100	1	0.428	0.400	106.9	60.0	120				

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 3 Document ID: 3120 Legacy ID: CFL-C21 Worksheet Validated 10/30/2020

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662			Units:	mg/Kg				Bato	:h ID: 220898	38
Matrix Spike/Matrix Spik	e Duplicate Recov	eries/					Sample ID:	22-012342-0	001	
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes
Abamectin	0.000	0.861	0.824	1.000	4.5%	< 30	86.1%	82.4%	50 - 150	
Acephate	0.000	1.040	1.023	1.000	1.6%	< 30	104.0%	102.3%	50 - 150	_
Acequinocyl	0.000	3.139	3.216	4.000	2.4%	< 30	78.5%	80.4%	50 - 150	_
Acetamiprid	0.000	0.410	0.395	0.400	3.6%	< 30	102.4%	98.8%	50 - 150	_
Aldicarb	0.000	0.793	0.782	0.800	1.4%	< 30	99.1%	97.7%	50 - 150	_
Azoxystrobin	0.000	0.388	0.385	0.400	0.8%	< 30	96.9%	96.1%	50 - 150	_
Bifenazate	0.000	0.442	0.434	0.400	1.8%	< 30	110.6%	108.6%	50 - 150	_
Bifenthrin	0.000	0.311	0.327	0.400	4.8%	< 30	77.8%	81.6%	50 - 150	_
Boscalid	0.000	0.804	0.824	0.800	2.4%	< 30	100.6%	103.0%	50 - 150	_
Carbaryl	0.000	0.404	0.374	0.400	7.6%	< 30	100.9%	93.5%	50 - 150	_
Carbofuran	0.000	0.401	0.383	0.400	4.6%	< 30	100.4%	95.8%	50 - 150	_
Chlorantraniliprole	0.000	0.420	0.395	0.400	6.3%	< 30	105.1%	98.7%	50 - 150	_
Chlorfenapyr	0.000	1.855	2.383	2.000	24.9%	< 30	92.7%	119.2%	50 - 150	_
Chlorpyrifos	0.011	0.459	0.425	0.400	7.8%	< 30	112.0%	103.5%	50 - 150	_
Clofentezine	0.000	0.397	0.382	0.400	3.8%	< 30	99.2%	95.5%	50 - 150	_
Cyfluthrin	0.000	0.790	0.709	2.000	10.8%	< 30	39.5%	35.5%	30 - 150	
Cypermethrin	0.000	0.785	0.733	2.000	6.9%	< 30	39.2%	36.6%	50 - 150	
Daminozide	0.000	2.164	2.141	2.000	1.1%	< 30	108.2%	107.0%	30 - 150	
Diazinon	0.000	0.351	0.342	0.400	2.7%	< 30	87.7%	85.4%	50 - 150	
Dichlorvos	0.000	2.090	1.907	2.000	9.2%	< 30	104.5%	95.3%	50 - 150	
Dimethoate	0.000	0.413	0.398	0.400	3.6%	< 30	103.2%	99.6%	50 - 150	_
Ethoprophos	0.000	0.413	0.402	0.400	1.2%	< 30	103.2%	100.5%	50 - 150	
Etofenprox	0.000	0.712	0.726	0.800	1.9%	< 30	89.1%	90.8%	50 - 150	
Etoxazole	0.000	0.362	0.359	0.400	0.9%	< 30	90.6%	89.8%	50 - 150	
Fenoxycarb	0.000	0.406	0.400	0.400	1.3%	< 30	101.4%	100.1%	50 - 150	
Fenpyroximate	0.000	0.419	0.445	0.800	6.0%	< 30	52.4%	55.7%	50 - 150	
Fipronil	0.000	0.779	0.717	0.800	8.2%	< 30	97.3%	89.7%	50 - 150	
Flonicamid	0.000	1.046	1.063	1.000	1.7%	< 30	104.6%	106.3%	50 - 150	
Fludioxonil	0.000			0.800	0.4%	< 30	104.6%	106.3%		
Hexythiazox	0.000	0.847 1.012	0.851	1.000	5.3%	< 30	105.9%	96.1%	50 - 150 50 - 150	
										_
Imazalil	0.000	0.400	0.397	0.400	0.9%	< 30	100.0%	99.1%	50 - 150 50 - 150	
Imidacloprid	0.000	0.829	0.816	0.800	1.5%	< 30	103.6%	102.0%		
Kresoxim-methyl	0.000	0.831	0.796 0.396	0.800	4.3% 1.1%	< 30	103.9%	99.5%	50 - 150 50 - 150	
Malathion		0.400	0.400			< 30	100.0%	99.0%		
Metalaxyl	0.000	0.400		0.400	0.2%				50 - 150	
Methiocarb	0.000	0.398	0.380	0.400	4.4%	< 30	99.4%	95.1%	50 - 150	_
Methomyl	0.000	0.785	0.785	0.800	0.1%	< 30	98.1%	98.2%	50 - 150	
MGK-264	0.000	0.398	0.389	0.400	2.3%	< 30	99.5%	97.2%	50 - 150	
Myclobutanil	0.000	0.395	0.349	0.400	12.6%	< 30	98.9%	87.1%	50 - 150	
Naled	0.000	0.973	0.911	1.000	6.6%	< 30	97.3%	91.1%	50 - 150	
Oxamyl	0.000	2.053	2.023	2.000	1.4%	< 30	102.6%	101.2%	50 - 150	
Paclobutrazole	0.000	0.802	0.779	0.800	2.9%	< 30	100.3%	97.4%	50 - 150	
Parathion-Methyl	0.000	0.891	0.733	0.800	19.4%	< 30	111.4%	91.7%	30 - 150	_
Permethrin	0.000	0.330	0.313	0.400	5.3%	< 30	82.6%	78.3%	50 - 150	
Phosmet	0.000	0.398	0.398	0.400	0.1%	< 30	99.5%	99.6%	50 - 150	
Piperonyl butoxide	0.000	1.814	1.806	2.000	0.4%	< 30	90.7%	90.3%	50 - 150	
Prallethrin	0.000	0.521	0.514	0.400	1.5%	< 30	130.3%	128.4%	50 - 150	
Propiconazole	0.000	0.963	0.920	0.800	4.6%	< 30	120.4%	115.0%	50 - 150	
Propoxur	0.000	0.425	0.380	0.400	11.1%	< 30	106.2%	95.0%	50 - 150	
Pyrethrin (Summe)	0.000	0.382	0.394	0.413	2.9%	< 30	92.6%	95.3%	50 - 150	
Pyridaben	0.000	0.430	0.415	0.400	3.4%	< 30	107.4%	103.8%	50 - 150	
Spinosad	0.000	0.327	0.320	0.388	2.4%	< 30	84.4%	82.4%	50 - 150	
Spiromesifen	0.000	0.402	0.406	0.400	1.0%	< 30	100.5%	101.5%	50 - 150	_
Spirotetramat	0.000	0.430	0.437	0.400	1.8%	< 30	107.4%	109.3%	50 - 150	
Spiroxamine	0.000	0.784	0.785	0.800	0.1%	< 30	98.0%	98.1%	50 - 150	_
Tebuconazole	0.000	0.799	0.811	0.800	1.5%	< 30	99.8%	101.3%	50 - 150	_
Thiacloprid	0.000	0.400	0.390	0.400	2.5%	< 30	99.9%	97.4%	50 - 150	_
Thiamethoxam	0.000	0.380	0.441	0.400	14.8%	< 30	94.9%	110.1%	50 - 150	_
Trifloxystrobin	0.000	0.370	0.359	0.400	3.1%	< 30	92.5%	89.7%	50 - 150	

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

	Ld	DOTALOT	y Quai	ity Contro	oi kesuits							
Residual Solvents						Bat	tch ID:	220901	.8			
Method Blank		Laborator			y Control Sample							
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	L	imi	its	Notes
Propane	ND	<	200		588	572	μg/g	102.8	60	-	120	
sobutane	ND	<	200		786	731	μg/g	107.5	60		120	
Butane	ND	<	200		762	731	μg/g	104.2	60		120	
2,2-Dimethylpropane	ND	<	200		1070	936	μg/g	114.3	60	,	120	
Methanol	ND	<	200		1920	1650	μg/g	116.4	60	i	120	
thylene Oxide	ND	<	30		58.2	56.2	μg/g	103.6	60	ı	120	
2-Methylbutane	ND	<	200		1770	1650	μg/g	107.3	60	ı	120	
Pentane	ND	<	200		1800	1650	μg/g	109.1	60	١	120	
Ethanol	ND	<	200		1900	1660	μg/g	114.5	70	٠	130	
Ethyl Ether	ND	<	200		1850	1630	μg/g	113.5	60	•	120	
2,2-Dimethylbutane	ND	<	30		204	189	μg/g	107.9	60	٠	120	
Acetone	ND	<	200		1890	1650	μg/g	114.5	60	٠	120	
2-Propanol	ND	<	200		1890	1650	μg/g	114.5	60	٠	120	
thyl Formate	ND	<	500		1320	1610	μg/g	82.0	70	٠	130	
Acetonitrile	ND	<	100		593	504	μg/g	117.7	60	Ŀ	120	
Methyl Acetate	ND ND	<	500		1650	1630	μg/g	101.2	70	Ŀ	130	
2,3-Dimethylbutane	ND	<	30		191	174	μg/g	109.8	60	Ŀ	120	
Dichloromethane	ND	<	60		582	521	μg/g	111.7	60	Ŀ	120	
2-Methylpentane	ND	<	30		203	187	μg/g	108.6	60		120	
MTBE 3-Methylpentane	ND ND	<	500 30		1590 211	1600 188	μg/g	99.4 112.2	70 60	Ŀ	130 120	-
		<			211		μg/g			_		
Hexane	ND ND	<	30 500		1620	182 1610	μg/g	117.0 100.6	60 70	·	120 130	
1-Propanol	ND ND		500		1630	1600	μg/g	100.6	70	·	130	
Methylethylketone	ND ND	<	200		1910		μg/g		60	Ŀ	120	
Ethyl acetate 2-Butanol	ND ND	<	200		1910	1630 1630	μg/g	117.2 116.0	60	Ŀ	120	
Fetrahydrofuran	ND ND	<	100		560	506	μg/g	110.0	60	Ŀ	120	
Cyclohexane	ND ND	<	200		1810	1640	μg/g	110.7	60	Ė	120	
2-methyl-1-propanol	ND ND	<	500		1510	1620	µg/g µg/g	93.2	70	Ė	130	
Benzene	ND ND	<	1		5,45	4.93	μg/g	110.5	60	Ë	120	
sopropyl Acetate	ND ND	~	200		1900	1640	дв/в дв/в	115.9	60	÷	120	
Heptane	ND ND		200		1650	1630	дв/в дв/в	101.2	60	-	120	
1-Butanol	ND ND	<	500		1550	1600	μg/g	96.9	70	-	130	
Propyl Acetate	ND ND	<	500		1680	1620	μg/g	103.7	70	-	130	
1.4-Dioxane	ND ND	<	100		554	493	µg/g	112.4	60	-	120	
2-Ethoxyethanol	ND ND	<	30		208	171	µg/g	121.6	60	-	120	01
Methylisobutylketone	ND ND	<	500		1520	1620	μg/g	93.8	70	-	130	42
3-Methyl-1-butanol	ND ND	<	500		1540	1610	μg/g	95.7	70	-	130	
Ethylene Glycol	ND	<	200		603	494	μg/g	122.1	60	-	120	01
Toluene	ND	<	100		558	506	μg/g	110.3	60	-	120	
sobutyl Acetate	ND	<	500		1590	1620	μg/g	98.1	70	-	130	
I-Pentanol	ND	<	500		1470	1610	μg/g	91.3	70	-	130	
Butyl Acetate	ND	<	500		1500	1610	μg/g	93.2	70	-	130	
Ethylbenzene	ND	<	200		1100	996	μg/g	110.4	60	-	120	
n,p-Xylene	ND	<	200		1100	1010	μg/g	108.9	60	-	120	
o-Xylene	ND	<	200		1030	979	μg/g	105.2	60	-	120	
Cumene	ND	<	30		193	188	μg/g	102.7	60	-	120	
Anisole	ND	<	500		1400	1610	μg/g	87.0	70	-	130	
OMSO	ND	<	500		1410	1600	μg/g	88.1	70	-	130	
1,2-dimethoxyethane	ND	<	50		185	190	μg/g	97.4	70	-	130	
Triethylamine	ND	<	500		1500	1610	μg/g	93.2	70	-	130	
N,N-dimethylformamide	ND	<	150		431	496	μg/g	86.9	70	-	130	
N,N-dimethylacetamide	ND	<	150		447	483	μg/g	92.5	70	-	130	
Pyridine	ND	<	50		150	167	μg/g	89.8	70	-	130	
Sulfolane	ND	<	50		131	161	μg/g	81.4	70	-	130	
1,2-Dichloroethane	ND	<	1		0.975	1	μg/g	97.5	70	-	130	
Chloroform	ND	<	1		0.969	1	μg/g	96.9	70	Ē	130	
Frichloroethylene	ND	<	1		0.933	1	μg/g	93.3	70	-	130	
1,1-Dichloroethane	ND	<	1		0.977	1	μg/g	97.7	70	-	130	

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

QC - Sample Duplicate					Sample ID:	22-012342-0001	
Analyte	Result	Org. Result	LOQ Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30 μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND ND	60 μg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
MTBE	ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
1-Propanol	ND ND	ND ND		0.0	< 20	Acceptable	
Methylethylketone	ND ND	ND ND	500 μg/g 500 μg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND ND	ND ND		0.0	< 20	Acceptable	
2-Butanol	ND ND	ND ND		0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500 μg/g	0.0	< 20 < 20	Acceptable	
Benzene	ND	ND	1 μg/g	0.0		Acceptable	
Isopropyl Acetate	ND	ND ND	200 μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100 μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Methylisobutylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Anisole	ND	ND	500 μg/g	0.0	< 20	Acceptable	
DMSO	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,2-dimethoxyethane	ND	ND	50 μg/g	0.0	< 20	Acceptable	
Triethylamine	ND	ND	500 μg/g	0.0	< 20	Acceptable	
N,N-dimethylformamide	ND	ND	150 μg/g	0.0	< 20	Acceptable	
N,N-dimethylacetamide	ND	ND	150 μg/g	0.0	< 20	Acceptable	
Pyridine	ND	ND	50 μg/g	0.0	< 20	Acceptable	
Sulfolane	ND	ND	50 μg/g	0.0	< 20	Acceptable	
1,2-Dichloroethane	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Chloroform	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Trichloroethylene	ND	ND	1 μg/g	0.0	< 20	Acceptable	
1,1-Dichloroethane	ND	ND	1 μg/g	0.0	< 20	Acceptable	

Abbreviations

Units of Measure:

ND - None Detected at or above MRL μg/g- Microgram per gram or ppm

RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Q1 - Quality control result biased high. Only non-detect samples reported.

22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 1 Document ID: 7086 Legacy ID: CFL-E57Worksheet Validated 11/04/2020

Terpenes Quality Control Results

Method Reference: EPA 5035 Batch ID: 2209027									
Pocul+	10	n	Notos		•			Limite	Notes
			NOTES						NOTES
	<								
	<				500		71%		
	<				500	μg/g	75%		
	<					μg/g			
	<				500	μg/g	80%		
	<				500	μg/g	73%		
	<				500	μg/g			
<loq< td=""><td><</td><td>200</td><td></td><td>435</td><td>500</td><td>μg/g</td><td>87%</td><td>70 - 130</td><td></td></loq<>	<	200		435	500	μg/g	87%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>422</td><td>500</td><td>μg/g</td><td>84%</td><td>70 - 130</td><td></td></loq<>	<	200		422	500	μg/g	84%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>494</td><td>500</td><td>μg/g</td><td>99%</td><td>70 - 130</td><td></td></loq<>	<	200		494	500	μg/g	99%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>386</td><td>500</td><td>μg/g</td><td>77%</td><td>70 - 130</td><td></td></loq<>	<	200		386	500	μg/g	77%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>383</td><td>500</td><td>μg/g</td><td>77%</td><td>70 - 130</td><td></td></loq<>	<	200		383	500	μg/g	77%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>356</td><td>500</td><td>μg/g</td><td>71%</td><td>70 - 130</td><td></td></loq<>	<	200		356	500	μg/g	71%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>400</td><td>500</td><td>μg/g</td><td>80%</td><td>70 - 130</td><td></td></loq<>	<	200		400	500	μg/g	80%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>351</td><td>500</td><td>μg/g</td><td>70%</td><td>70 - 130</td><td></td></loq<>	<	200		351	500	μg/g	70%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>436</td><td>500</td><td></td><td>87%</td><td>70 - 130</td><td></td></loq<>	<	200		436	500		87%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>405</td><td>500</td><td></td><td>81%</td><td>70 - 130</td><td></td></loq<>	<	200		405	500		81%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>440</td><td>500</td><td></td><td>88%</td><td>70 - 130</td><td></td></loq<>	<	200		440	500		88%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>399</td><td>500</td><td></td><td>80%</td><td>70 - 130</td><td></td></loq<>	<	200		399	500		80%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>414</td><td>500</td><td></td><td>83%</td><td>70 - 130</td><td></td></loq<>	<	200		414	500		83%	70 - 130	
<loq< td=""><td><</td><td>200</td><td></td><td>375</td><td>500</td><td></td><td>75%</td><td>70 - 130</td><td></td></loq<>	<	200		375	500		75%	70 - 130	
	<	200		380			76%	70 - 130	
	Result	Result LO	Result LOQ	Result	Result LOQ Notes Result	Result LOQ Notes Result LCS	Color	Result LOQ Notes Result LCS Units LCS / Rec CLOQ C 200 A23 500 µg/g 85% CLOQ C 200 A414 500 µg/g 83% CLOQ C 200 A414 500 µg/g 83% CLOQ C 200 A414 500 µg/g 83% CLOQ C 200 A386 500 µg/g 77% CLOQ C 200 A386 500 µg/g 77% CLOQ C 200 A382 500 µg/g 77% CLOQ C 200 A382 500 µg/g 77% CLOQ C 200 A415 500 µg/g 73% CLOQ C 200 A416 500 µg/g 83% CLOQ C 200 A416 500 µg/g 75% CLOQ C 200 A416 500 µg/g 75% CLOQ C 200 A416 500 µg/g 75% CLOQ C 200 A390 500 µg/g 75% CLOQ C 200 A390 500 µg/g 78% CLOQ C 200 A390 500 µg/g 78% CLOQ C 200 A401 500 µg/g 80% CLOQ C 200 A441 500 µg/g 80% CLOQ C 200 A344 500 µg/g 80% CLOQ C 200 A344 500 µg/g 75% CLOQ C 200 A345 500 µg/g 75% CLOQ C 200 A367 500 µg/g 73% CLOQ C 200 A367 500 µg/g 73% CLOQ C 200 A368 500 µg/g 73% CLOQ C 200 A368 500 µg/g 75% CLOQ C 200 A368 500 µg/g 80% CLOQ C 200 A368 500 µg/g 75% CLOQ C 200 A366 500 µg/g 75% CLOQ C 200 A366 500 µg/g 80% CLOQ C 200 A366 500 µg/g 77% CLOQ C	Color Control Color Co

Definitions

LOQ Limit of Quantitation

% REC

Laboratory Control Sample Percent Recovery

22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Revision: 1 Document ID: 7086 Legacy ID: CFL-E57Worksheet Validated 11/04/2020

Terpenes Quality Control Results

Method Reference: E	PA 5035		Batch ID: 2209027						
Sample/Sample Dupl	icate	•	Sar	001					
Analyte	Result	Org. Result	LOQ	Units	% RPD	LIMIT	Notes		
a-pinene	5550	5570	184	μg/g	0%	< 20			
Camphene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Sabinene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
b-Pinene	2290	2300	184	μg/g	0%	< 20			
b-Myrcene	24400	24300	184	μg/g	0%	< 20			
a-phelllandrene	463	477	184	μg/g	3%	< 20			
d-3-Carene	248	241	184	μg/g	3%	< 20			
a-Terpinene	378	364	184	μg/g	4%	< 20			
p-Cymene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
D-Limonene	5110	5080	184	μg/g	1%	< 20			
Eucalyptol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
b-cis-Ocimene	103	109	61.3	μg/g	6%	< 20			
b-trans-Ocimene	2000	1990	123	μg/g	1%	< 20			
g-Terpinene	273	269	184	μg/g	1%	< 20			
Sabinene_Hydrate	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Terpinolene	9110	9020	184	μg/g	1%	< 20			
D-Fenchone	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Linalool	1590	1560	184	μg/g	2%	< 20			
Fenchol	600	578	184	μg/g	4%	< 20			
Camphor	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Isopulego	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Isoborneol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Borneol	253	249	184	μg/g	2%	< 20			
DL-Menthol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Terpineol	759	748	184	μg/g	1%	< 20			
Nerol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Pulegone	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Gereniol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Geranyl_Acetate	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
a-Cedrene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
b-Caryophyllene	12900	12700	184	μg/g	2%	< 20			
a-Humulene	7090	6990	184	μg/g	1%	< 20			
Valenene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
cis-Nerolidol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
a-Farnesene	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
trans-Nerolidol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
Caryophyllene_Oxide	1050	991	184	μg/g	6%	< 20			
Guaiol	2340	2270	184	μg/g	3%	< 20			
Cedrol	<loq< td=""><td><loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<></td></loq<>	<loq< td=""><td>184</td><td>μg/g</td><td>0%</td><td>< 20</td><td></td></loq<>	184	μg/g	0%	< 20			
a-Bisabolol	3490	3420	184	μg/g	2%	< 20			

Definitions

Relative Percent Difference

Report Number: 22-012621/D002.R000

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

22-012621/D002.R000 **Report Number:**

Report Date: 10/25/2022 ORELAP#: OR100028

Purchase Order:

Received: 10/18/22 14:20

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

Sample ID SD230329-008 (71349)		Matrix Concentrate (Inhalable Cannabis Good)
Tested for The Hemp Collect		
Sampled -	Received Mar 28, 2023	Reported Apr 05, 2023
Analyses executed CAN+ RES MIR	RIG MTO PES HME EVI	

Laboratory note: The estimated concentration of the unknown peak in the sample is 6.60% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or 49-THC. At this time there are no reference standards available for (+)d8-THC is o different compound from the main (-)d8-THC cannobinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is problematic for the scientific community as a whole. PharmLabs believes the unidentified peak to be a combination of (+)d8-THC with the majority, if not all, of the concentration being (+)d8-THC. Total (+/-) D8 Concentration is estimated to be 94.56%.

CAN+ - Cannabinoids Analysis

Analyzed Apr 04, 2023 | Instrument HPLC-VWD | Method SOP-001

The expanded Uncertainty of the Cannabinoid analysis is approximately **3.806**% at the 95% Confidence Level

Analyte	LOD mg/g	LOQ mg/g	Result	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	94.56	945.60
Cannabicyclol (CBL)	0.002	0.16	ND	ND
Cannabichromene (CBC)	0.002	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Total THC (THCa * 0.877 + Δ9THC)			ND	ND
Total THC + Δ8THC (THCa * 0.877 + Δ9THC + Δ8THC)			94.56	945.60
Total CBD (CBDa * 0.877 + CBD)			ND	ND
Total CBG (CBGa * 0.877 + CBG)			ND	ND
Total Cannabinoids			94.56	945.60

HME - Heavy Metals Detection Analysis

Analyzed Apr 04, 2023 | Instrument ICP/MSMS | Method SOP-005

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Arsenic (As)	0.0002	0.0005	ND	0.2	Cadmium (Cd)	3.0e-05	0.0005	ND	0.2
Mercury (Hg)	1.0e-05	0.0001	ND	0.1	Lead (Pb)	1.0e-05	0.00125	ND	0.5

MIBIG - Microbial Testing Analysis

Analyzed Mar 31, 2023 | Instrument qPCR and/or Plating | Method SOP-007

Analyzed that 51, 2025 Metallicit of all and 51 Training Textical 551 Textical								
Analyte	Result CFU/g	Limit	Analyte	Result CFU/g	Limit			
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram			
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram			
Acporaillus pigor	ND	ND por 1 gram	Asporaillus torrous	ND	ND por 1 gram			

MTO - Mycotoxin Testing Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS | Method SOP-004

Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg	Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULOL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Wed, 05 Apr 2023 10:13:00 -0700

PES - Pesticides Screening Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS GC/MSMS | Method SOP-003

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Aldicarb	0.0078	0.02	ND	0.0078	Carbofuran	0.01	0.02	ND	0.01
Dimethoate	0.01	0.02	ND	0.01	Etofenprox	0.02	0.1	ND	0.02
Fenoxycarb	0.01	0.02	ND	0.01	Thiachloprid	0.01	0.02	ND	0.01
Daminozide	0.01	0.03	ND	0.01	Dichlorvos	0.02	0.07	ND	0.02
Imazalil	0.02	0.07	ND	0.02	Methiocarb	0.01	0.02	ND	0.01
Spiroxamine	0.01	0.02	ND	0.01	Coumaphos	0.01	0.02	ND	0.01
Fipronil	0.01	0.1	ND	0.01	Paclobutrazol	0.01	0.03	ND	0.01
Chlorpyrifos	0.01	0.04	ND	0.01	Ethoprophos (Prophos)	0.01	0.02	ND	0.01
Baygon (Propoxur)	0.01	0.02	ND	0.01	Chlordane	0.04	0.1	ND	0.04
Chlorfenapyr	0.03	0.1	ND	0.03	Methyl Parathion	0.02	0.1	ND	0.02
Mevinphos	0.03	0.08	ND	0.03	Abamectin	0.03	0.08	ND	0.1
Acephate	0.02	0.05	ND	0.1	Acetamiprid	0.01	0.05	ND	0.1
Azoxystrobin	0.01	0.02	ND	0.1	Bifenazate	0.01	0.05	ND	0.1
Bifenthrin	0.02	0.35	ND	3	Boscalid	0.01	0.03	ND	0.1
Carbaryl	0.01	0.02	ND	0.5	Chlorantraniliprole	0.01	0.04	ND	10
Clofentezine	0.01	0.03	ND	0.1	Diazinon	0.01	0.02	ND	0.1
Dimethomorph	0.02	0.06	ND	2	Etoxazole	0.01	0.05	ND	0.1
Fenpyroximate	0.02	0.1	ND	0.1	Flonicamid	0.01	0.02	ND	0.1
Fludioxonil	0.01	0.05	ND	0.1	Hexythiazox	0.01	0.03	ND	0.1
Imidacloprid	0.01	0.05	ND	5	Kresoxim-methyl	0.01	0.03	ND	0.1
Malathion	0.01	0.05	ND	0.5	Metalaxyl	0.01	0.02	ND	2
Methomyl	0.02	0.05	ND	1	Myclobutanil	0.02	0.07	ND	0.1
Naled	0.01	0.02	ND	0.1	Oxamyl	0.01	0.02	ND	0.5
Permethrin	0.01	0.02	ND	0.5	Phosmet	0.01	0.02	ND	0.1
Piperonyl Butoxide	0.02	0.06	ND	3	Propiconazole	0.03	0.08	ND	0.1
Prallethrin	0.02	0.05	ND	0.1	Pyrethrin	0.05	0.41	ND	0.5
Pyridaben	0.02	0.07	ND	0.1	Spinosad A	0.01	0.05	ND	0.1
Spinosad D	0.01	0.05	ND	0.1	Spiromesifen	0.02	0.06	ND	0.1
Spirotetramat	0.01	0.02	ND	0.1	Tebuconazole	0.01	0.02	ND	0.1
Thiamethoxam	0.01	0.02	ND	5	Trifloxystrobin	0.01	0.02	ND	0.1
Acequinocyl	0.02	0.09	ND	0.1	Captan	0.01	0.02	ND	0.7
Cypermethrin	0.02	0.1	ND	1	Cyfluthrin	0.04	0.1	ND	2
Fenhexamid	0.02	0.07	ND	0.1	Spinetoram J,L	0.02	0.07	ND	0.1
Pentachloronitrobenzene	0.01	0.1	ND	0.1					

RES - Residual Solvents Testing Analysis

Analyzed Apr 04, 2023 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Propane (Prop)	0.4	40.0	ND	5000.0	Butane (But)	0.4	40.0	ND	5000.0
Methanol (Metha)	0.4	40.0	ND	3000.0	Ethylene Oxide (EthOx)	0.4	0.8	ND	1.0
Pentane (Pen)	0.4	40.0	ND	5000.0	Ethanol (Ethan)	0.4	40.0	ND	5000.0
Ethyl Ether (EthEt)	0.4	40.0	ND	5000.0	Acetone (Acet)	0.4	40.0	ND	5000.0
Isopropanol (2-Pro)	0.4	40.0	ND	5000.0	Acetonitrile (Acetonit)	0.4	40.0	ND	410.0
Methylene Chloride (MetCh)	0.4	0.8	1.0	1.0	Hexane (Hex)	0.4	40.0	ND	290.0
Ethyl Acetate (EthAc)	0.4	40.0	ND	5000.0	Chloroform (Clo)	0.4	0.8	ND	1.0
Benzene (Ben)	0.4	0.8	ND	1.0	1-2-Dichloroethane (12-Dich)	0.4	0.8	ND	1.0
Heptane (Hep)	0.4	40.0	ND	5000.0	Trichloroethylene (TriClEth)	0.4	0.8	ND	1.0
Toluene (Toluene)	0.4	40.0	ND	890.0	Xulenes (Xul)	0.4	40.0	ND	2170.0

FVI - Filth & Foreign Material Inspection Analysis

Analyzed Mar 30, 2023 | Instrument Microscope | Method SOP-010

Analyte / Limit	Result	Analyte / Limit	Result
> 1/4 of the total sample area covered by sand, soil, cinders, or dirt	ND	> 1/4 of the total sample area covered by mold	ND
> 1 insect fragment, 1 hair, or 1 count mammalian excreta per 3q	ND	> 1/4 of the total sample area covered by an imbedded foreign material	ND

UI Not Identified
ND Not Detected
NA Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
«LOQ Detected
»ULOL Above upper limit of linearity
CFU/g Colony Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Stark

