Customer:
Product identity: Client/Metrc ID:

IHC LLC
0103LIRVAP200_PPine

22-015309-0001

Received:

Summary

Analyte	Result (\%)			$\left[\begin{array}{cc}--------------76 \%\end{array}\right]$
$\Delta 8$-THC	76.2		- $\triangle 8$-THC	CBD-Total 3.76\%
CBD-A	4.16	,	- CBD-A	
$\Delta 8$-THCV	0.379		- $\triangle 8$-THCV	THC-Total 0.181\%
CBDV-A	0.288		CBDV-A	- - - - - - - - - - - - - - -
CBC-A	0.213		- CbG-A	(Reported in percent of total sample)
CBG-A	0.208		- THC-A	
THC-A	0.206		- CBT	
CBT	0.168		- CbD	
CBD	0.108			

Report Number:	22-015309/D002.R000
Report Date:	$12 / 19 / 2022$
ORELAP\#:	OR100028
Purchase Order:	
Received:	$12 / 14 / 2216: 35$

Customer:	IHC LLC
	825 NW 16th Ave
	Portland Oregon 97209
	United States of America (USA)
Product identity:	0103 LIRVAP200_PPine
Client/Metrc ID:	.
Sample Date:	$22-015309-0001$
Laboratory ID:	No HE HEM P
Evidence of Cooling:	
Temp:	$18.1^{\circ} \mathrm{C}$
Relinquished by:	Client

Sample Results

Potency	Method: J AOA	C 2015	8-6 (m	Units \%	Batch: 2210744	Analyze: 12/16/22	10:39:00 P
Analyte	As Received	Dry weigh	LOQ	Notes			
CBC	< LOQ		0.0675				- $\triangle 8$-THC
CBC-A	0.213		0.0675				- $\triangle 8$-THCV
CBC-Total	0.187		0.127				- CBDV-A
CBD	0.108		0.0675				- CbC-A
CBD-A	4.16		0.0675				- CBG-A
CBD-Total	3.76		0.127				- THC-A
CBDV	< LOQ		0.0675				- CBT
CBDV-A	0.288		0.0675				- CBD
CBDV-Total	0.250		0.126				
CBE	< LOQ		0.0675				
CBG	< LOQ		0.0675				
CBG-A	0.208		0.0675				
CBG-Total	0.183		0.126				
CBL	< LOQ		0.0675				
CBL-A	< LOQ		0.0675				
CBL-Total	<LOQ		0.127				
CBN	< LOQ		0.0675				
CBT	0.168		0.0675				
$\triangle 10-\mathrm{THC}$	< LOQ		0.0675				
$\Delta 8$-THC	76.2		0.675				
$\Delta 8$-THCV	0.379		0.0675				
$\Delta 9$-THC	<LOQ		0.0675				
exo-THC	< LOQ		0.0675				
THC-A	0.206		0.0675				
THC-Total	0.181		0.127				
THCV	< LOQ		0.0675				
THCV-A	<LOQ		0.0675				
THCV-Total	< LOQ		0.126				
Total Cannabinoids	81.9						

[^0]

Report Number: 22-015309/D002.R000
Report Date: 12/19/2022
ORELAP\#: OR100028
Purchase Order:
Received: 12/14/22 16:35

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified dearee of confidence.
$\mathrm{p}=$ ISO/IEC 17025:2017 accredited method.

Units of Measure

\% = Percentage of sample
$\% \mathrm{wt}=\mu \mathrm{g} / \mathrm{g}$ divided by 10,000

Approved Signatory

Derrick Tanner
General Manager

12423 NE Whitaker Way
Portland, OR 97230
503-254-1794

Report Number: 22-015309/D002.R000
Report Date: 12/19/2022
ORELAP\#: OR100028
Purchase Order:
Received:
12/14/22 16:35

Hemp / Cannabls Usable / Extract / Finished Products Chain of Custody Record

ticue

								$\frac{E}{2}$				$\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{8} \\ & \frac{1}{2} \end{aligned}$	砉				
	nam	Tre												Servit	$\begin{aligned} & \text { Wevel } \\ & \text { (} 4+t=1) \end{aligned}$	Cammentuerio	
1 VCBLIRVAP 200_PPine					\%									C			
2																	
3																	
4																	
5																	
8																	
7																	
8																	
3																	
10																	
Hinusich	Date	Inine	manumar:							Dive		nime		Latuse Doke			
Kyle Farock	12/14	4.00 Pr	$A \subset$							$12-1416.35$				[1) Menesl Ma: \qquad \qquad 181 \qquad \qquad \qquad Trolai manay \qquad			

 Pathers bevtexo

Report Number: 22-015309/D002.R000
Report Date: 12/19/2022
ORELAP\#: OR100028
Purchase Order:
Received:
12/14/22 16:35

Laboratory Quality Control Results										
Laboratory Control Sample										
Analyte	LCS	Result	Spike	Units	\%Re		Limits		Evaluation	Notes
CBDVA	2	0.100	0.101	\%	99.2	80.0	-	120	Acceptable	
CBDV	2	0.112	0.110	\%	102	80.0	-	120	Acceptable	
CBE	2	0.101	0.106	\%	95.1	80.0	-	120	Acceptable	
CBDA	1	0.0996	0.096	\%	104	90.0	-	110	Acceptable	
CBGA	1	0.0992	0.097	\%	103	80.0	-	120	Acceptable	
CBG	1	0.100	0.095	\%	105	80.0	-	120	Acceptable	
CBD	1	0.0999	0.096	\%	105	90.0	-	110	Acceptable	
THCV	2	0.103	0.105	\%	97.9	80.0	-	120	Acceptable	
d8THCV	2	0.101	0.107	\%	94.4	80.0	-	120	Acceptable	
THCVA	2	0.101	0.099	\%	102	80.0	-	120	Acceptable	
CBN	1	0.102	0.099	\%	104	80.0	-	120	Acceptable	
exo-THC	2	0.0984	0.103	\%	95.9	80.0	-	120	Acceptable	
d9THC	1	0.0978	0.102	\%	96.0	90.0	-	110	Acceptable	
d8THC	1	0.0940	0.100	\%	93.9	90.0	-	110	Acceptable	
CBL	2	0.0958	0.100	\%	95.9	80.0	-	120	Acceptable	
d10THC	1	NA	0.092	\%	NA	80.0	-	120	Acceptable	Q6
CBC	2	0.105	0.109	\%	96.3	80.0	-	120	Acceptable	
THCA	1	0.0935	0.096	\%	97.6	90.0	-	110	Acceptable	
CBCA	2	0.0996	0.103	\%	96.7	80.0	-	120	Acceptable	
CBLA	2	0.104	0.105	\%	98.9	80.0	-	120	Acceptable	
CBT	2	0.102	0.109	\%	93.6	80.0	-	120	Acceptable	
Method Bank										
Analyte	Result		LOQ		Units		Limits		Evaluation	Notes
CBDVA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBDV		<LOQ	0.077		\%		<0.077		Acceptable	
CBE		<LOQ	0.077		\%		< 0.077		Acceptable	
CBDA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBGA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBG		<LOQ	0.077		\%		< 0.077		Acceptable	
CBD		<LOQ	0.077		\%		< 0.077		Acceptable	
THCV		<LOQ	0.077		\%		< 0.077		Acceptable	
d8THCV		<LOQ	0.077		\%		< 0.077		Acceptable	
THCVA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBN		<LOQ	0.077		\%		< 0.077		Acceptable	
exo-THC		<LOQ	0.077		\%		< 0.077		Acceptable	
d9THC		<LOQ	0.077		\%		< 0.077		Acceptable	
d8THC		<LOQ	0.077		\%		< 0.077		Acceptable	
CBL		<LOQ	0.077		\%		< 0.077		Acceptable	
d10THC		<LOQ	0.077		\%		< 0.077		Acceptable	
CBC		<LOQ	0.077		\%		< 0.077		Acceptable	
THCA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBCA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBLA		<LOQ	0.077		\%		< 0.077		Acceptable	
CBT		<LOQ	0.077		\%		< 0.077		Acceptable	

ND - None Detected at or above MRL
PPD - Relative Percent Differenc
QQ - Limit of Quantitation

Units of Measure:
$\%$ - Percent

Report Number: 22-015309/D002.R000
Report Date: 12/19/2022
ORELAP\#: OR100028
Purchase Order:
Received: 12/14/22 16:35

Units of Measure:

Report Date: 12/19/2022
ORELAP\#: OR100028
Purchase Order:
Received:
12/14/22 16:35

Report Number: 22-015309/D002.R000
Report Date: 12/19/2022
ORELAP\#:
OR100028
Purchase Order:
Received:
12/14/22 16:35

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or \% recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
B	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Customer:	IHC LLC
Product identity:	01LIR209_PPine
Client/Metrc ID:	.
Laboratory ID:	$22-012267-0003$

Summary

Analyte	Result (\%)			-------------
CBD-A	61.8		- CbD-A	CBD-Total 54.8%
CBDV-A	4.04	,	- CBDV-A	------------------
CBG-A	2.32	\sim	- CBG-A	THC-Total $\quad 2.02 \%$
CBC-A	2.29		CBC-A	- - - - - - - - - -
THC-A	2.21		- thcv-a	(Reported in percent of total sample)
THCV-A	0.754		- CBD	
CBD	0.567		- CBG	
CBG	0.159		- $\triangle 9$-THC	
$\Delta 9$-THC	0.0812			

Residual Solvents:

Analyte	Result $(\boldsymbol{\mu g} / \mathbf{g})$	Limits $(\boldsymbol{\mu g} / \mathbf{g})$	Status
	2480	5000	pass
Butanes (sum)	2480		
n-Butane			

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Report Number:	$22-012267 / D 004 . R 000$
Report Date:	$10 / 18 / 2022$
ORELAP\#:	OR100028
Purchase Order:	
Received:	$10 / 11 / 2212: 56$

Customer:	IHC LLC
	825 NW 16th Ave
	Portland Oregon 97209
	United States of America (USA)
Product identity:	01LIR209_PPine
Client/Metrc ID:	.
Sample Date:	
Laboratory ID:	22-012267-0003
Evidence of Cooling:	No
Temp:	10.4
Relinquished by:	ramos

THE HEMP
COLLECT

Sample Results

Potency	Method: J AOA	C 2015	98-6 (mod	Units \%	Batch: 2208812	Analyze: 10/14/22	7:16:00 PM
Analyte	As Received	Dry weigh	LOQ	Notes			
CBC	<LOQ		0.0755				
CBC-A	2.29		0.0755				CBG-A
CBC-Total	2.01		0.142				- CBC-A
CBD	0.567		0.0755				- thC-A
CBD-A	61.8		0.755				- THCV-A
CBD-Total	54.8		0.738				- CBD
CBDV	<LOQ		0.0755				- CBG
CBDV-A	4.04		0.0755				$\Delta 9$-TH
CBDV-Total	3.50		0.141				
CBE	< LOQ		0.0755				
CBG	0.159		0.0755				
CBG-A	2.32		0.0755				
CBG-Total	2.20		0.141				
CBL	<LOQ		0.0755				
CBL-A	<LOQ		0.0755				
CBL-Total	<LOQ		0.142				
CBN	<LOQ		0.0755				
CBT	<LOQ		0.0755				
$\Delta 10-\mathrm{THC}$	<LOQ		0.0755				
$\Delta 8$-THC	<LOQ		0.0755				
$\Delta 8$-THCV	< LOQ		0.0755				
$\Delta 9$-THC	0.0812		0.0755				
exo-THC	< LOQ		0.0755				
THC-A	2.21		0.0755				
THC-Total	2.02		0.142				
THCV	< LOQ		0.0755				
THCV-A	0.754		0.0755				
THCV-Total	0.662		0.141				
Total Cannabinoids	74.2						

[^1]
12423 NE Whitaker Way
 Portland, OR 97230
 503-254-1794

Report Number:
22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#:
OR100028
Purchase Order:
Received: 10/11/22 12:56

Solvents	Method: Residual Solvents by GC/MS ${ }^{\text {p }}$					Units $\mu \mathrm{g} / \mathrm{g}$ Batch 2208815		Analyze 10/17/22 12:33 PM			
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	<LOQ	380	100	pass		2-Butanol	<LOQ	5000		pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	<LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	<LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	<LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	<LOQ		30.0		
Acetone	<LOQ	5000	200	pass		Acetonitrile	<LOQ	410	100	pass	
Benzene	<LOQ	2.00	1.00	pass		Butanes (sum)	2480	5000	400	pass	
Cyclohexane	<LOQ	3880	200	pass		Ethyl acetate	<LOQ	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	<LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	<LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	<LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	<LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	2480		200		E
n -Heptane	< LOQ	5000	200	pass		n -Hexane	<LOQ		30.0		
n -Pentane	<LOQ		200			o-Xylene	<LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	<LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	<LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	<LOQ	2170	600	pass	

[^2]12423 NE Whitaker Way
Portland, OR 97230
503-254-1794

Report Number:
Report Date:
ORELAP\#:
0/18/2022
OR100028
Purchase Order:
Received:
10/11/22 12:56

Pesticides	Method: AOAC 2007.01 \& EN 15662 (mod) ${ }^{\text {b }}$				Units mg/kg Batch 2208761		Analyze 10/14/22 10:49 AM		
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status	Notes
Abamectin*	< LOQ	0.50	0.250 pass		Acephate ${ }^{*}$	< LOQ	0.40	0.250 pass	
Acequinocyl*	<LOQ	2.0	1.00 pass		Acetamiprid ${ }^{*}$	< LOQ	0.20	0.100 pass	
Aldicarb*	<LOQ	0.40	0.200 pass		Azoxystrobin*	< LOQ	0.20	0.100 pass	
Bifenazate*	<LOQ	0.20	0.100 pass		Bifenthrin*	< LOQ	0.20	0.100 pass	
Boscalid ${ }^{*}$	< LOQ	0.40	0.200 pass		Carbaryl*	< LOQ	0.20	0.100 pass	
Carbofuran*	<LOQ	0.20	0.100 pass		Chlorantraniliprole*	< LOQ	0.20	0.100 pass	
Chlorfenapyr*	<LOQ	1.0	0.500 pass		Chlorpyrifos ${ }^{*}$	< LOQ	0.20	0.100 pass	
Clofentezine ${ }^{*}$	<LOQ	0.20	0.100 pass		Cyfluthrin*	< LOQ	1.0	0.500 pass	
Cypermethrin*	<LOQ	1.0	0.500 pass		Daminozide*	< LOQ	1.0	0.500 pass	
Diazinon ${ }^{*}$	<LOQ	0.20	0.100 pass		Dichlorvos*	< LOQ	1.0	0.500 pass	
Dimethoate*	<LOQ	0.20	0.100 pass		Ethoprophos*	< LOQ	0.20	0.100 pass	
Etofenprox*	<LOQ	0.40	0.200 pass		Etoxazole*	< LOQ	0.20	0.100 pass	
Fenoxycarb ${ }^{*}$	< LOQ	0.20	0.100 pass		Fenpyroximate*	<LOQ	0.40	0.200 pass	
Fipronil*	<LOQ	0.40	0.200 pass		Flonicamid*	< LOQ	1.0	0.400 pass	
Fludioxonil*	<LOQ	0.40	0.200 pass		Hexythiazox*	< LOQ	1.0	0.400 pass	
Imazalil*	<LOQ	0.20	0.100 pass		Imidacloprid*	<LOQ	0.40	0.200 pass	
Kresoxim-methy**	<LOQ	0.40	0.200 pass		Malathion*	<LOQ	0.20	0.100 pass	
Metalaxy ${ }^{*}$	<LOQ	0.20	0.100 pass		Methiocarb*	< LOQ	0.20	0.100 pass	
Methomyl*	<LOQ	0.40	0.200 pass		MGK-264*	<LOQ	0.20	0.100 pass	
Myclobutani* ${ }^{\text {* }}$	<LOQ	0.20	0.100 pass		Naled ${ }^{\text {F }}$	<LOQ	0.50	0.250 pass	
Oxamyl*	<LOQ	1.0	0.500 pass		Paclobutrazole*	<LOQ	0.40	0.200 pass	
Parathion-Methyl*	<LOQ	0.20	0.200 pass		Permethrin*	<LOQ	0.20	0.100 pass	
Phosmet*	<LOQ	0.20	0.100 pass		Piperonyl butoxide ${ }^{*}$	<LOQ	2.0	1.00 pass	
Prallethrin*	<LOQ	0.20	0.200 pass		Propiconazole ${ }^{*}$	<LOQ	0.40	0.200 pass	
Propoxur*	<LOQ	0.20	0.100 pass		Pyrethrin I (total)*	< LOQ	1.0	0.500 pass	
Pyridaben*	<LOQ	0.20	0.100 pass		Spinosad*	< LOQ	0.20	0.100 pass	
Spiromesifen*	<LOQ	0.20	0.100 pass		Spirotetramat ${ }^{*}$	<LOQ	0.20	0.100 pass	
Spiroxamine*	<LOQ	0.40	0.200 pass		Tebuconazole*	< LOQ	0.40	0.200 pass	
Thiacloprid*	<LOQ	0.20	0.100 pass		Thiamethoxam*	< LOQ	0.20	0.100 pass	
Trifloxystrobin*	<LOQ	0.20	0.100 pass						

Metals									
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed	Method	Status	Notes
Arsenic	< LOQ	0.200	$\mathrm{mg} / \mathrm{kg}$	0.0820	2208736	10/13/22	AOAC 2013.06 (mod.) ${ }^{\text {b }}$	pass	
Cadmium	< LOQ	0.200	$\mathrm{mg} / \mathrm{kg}$	0.0820	2208736	10/13/22	AOAC 2013.06 (mod.) ${ }^{\text {b }}$	pass	
Lead	< LOQ	0.500	$\mathrm{mg} / \mathrm{kg}$	0.0820	2208736	10/13/22	AOAC 2013.06 (mod.) ${ }^{\text {b }}$	pass	
Mercury	<LOQ	0.100	$\mathrm{mg} / \mathrm{kg}$	0.0410	2208736	10/13/22	AOAC 2013.06 (mod.) ${ }^{\text {b }}$	pass	

[^3]These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified dearee of confidence.
$\mathrm{p}=$ ISO/IEC 17025:2017 accredited method.
${ }^{*}=$ TNI accredited analyte.

Units of Measure

$\mu \mathrm{g} / \mathrm{g}=$ Microgram per gram
$\mathrm{mg} / \mathrm{kg}=$ Milligram per kilogram $=$ parts per million (ppm)
$\%=$ Percentage of sample
$\% \mathrm{wt}=\mu \mathrm{g} / \mathrm{g}$ divided by 10,000

Glossary of Qualifiers

E: Analyte concentration exceeds the calibration range, results are estimated.

Approved Signatory

Derrick Tanner
General Manager

Report Date:	$10 / 18 / 2022$
ORELAP\#:	OR100028

Purchase Order:
Received:

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record
Revisfon: 4.00 Controit CPG23 Rev 02/24/2021 it Oy/b4/3021 OREAAP CXCRY0008

12423 NE Whitaker Way
 Portland, OR 97230

503-254-1794

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

Revision: 3 Document ID. 3120
LegacyID: CFLC21WorksheetValdated 10/30/2020

AOAC2007.1 \&EN 15662 Method Bank	Units: mg/Kg					Batch ID. 2208761			
	Laboratory Control Sample								
Analyte	Blank Reult	Blank Limits	Notes	LCSReult	LCSSpke	LCS\% Re		s	Notes
Abamectin	0.000	<0.250		0.880	1.000	88.0	50.0	150	
Acephate	0.000	<0.250		0.824	1.000	82.4	60.0	120	
Acequinocyl	0.000	< 1.000		3.353	4.000	83.8	40.0	160	
Acetamiprid	0.000	<0.100		0.368	0.400	91.9	60.0	120	
Aldicarb	0.000	<0.200		0.717	0.800	89.7	60.0	120	
Azoxystrobin	0.000	<0.100		0.363	0.400	90.8	60.0	120	
Bifenazate	0.000	<0.100		0.362	0.400	90.6	60.0	120	
Bifenthrin	0.000	<0.100		0.350	0.400	87.5	50.0	150	
Boscalid	0.000	<0.200		0.719	0.800	89.8	60.0	120	
Carbaryl	0.000	<0.100		0.367	0.400	91.8	60.0	120	
Carbofuran	0.000	<0.100		0.371	0.400	92.7	60.0	120	
काlorantraniliprole	0.000	<0.100		0.350	0.400	87.4	60.0	120	
कhlorfenapyr	0.000	< 0.500		1.607	2.000	80.3	60.0	120	
कhlorpyrifos	0.000	<0.100		0.368	0.400	92.0	60.0	120	
dofentezine	0.000	< 0.100		0.357	0.400	89.2	60.0	120	
Offluthrin	0.000	< 0.500		1.919	2.000	95.9	50.0	150	
Opermethrin	0.000	< 0.500		1.806	2.000	90.3	50.0	150	
Daminozide	0.000	< 0.500		1.886	2.000	94.3	60.0	120	
Diazinon	0.000	< 0.100		0.372	0.400	93.1	60.0	120	
Dichlorvos	0.000	< 0.500		1.842	2.000	92.1	60.0	120	
Dimethoate	0.000	<0.100		0.369	0.400	92.4	60.0	120	
Ehoprophos	0.000	<0.100		0.347	0.400	86.6	60.0	120	
Eotenprox	0.000	<0.200		0.707	0.800	88.4	50.0	150	
Eloxazle	0.000	<0.100		0.36	0.400	90.2	60.0	120	
Fenoxycarb	0.000	<0.100		0.35	0.400	88.8	60.0	120	
Fenpyroximate	0.000	<0.200		0.708	0.800	88.5	60.0	120	
Fipronil	0.000	< 0.200		0.719	0.800	89.9	60.0	120	
Fonicamid	0.000	<0.250		0.944	1.000	94.4	60.0	120	
Hudioxonil	0.000	< 0.200		0.805	0.800	100.6	50.0	150	
Hexythiazox	0.000	<0.250		0.89	1.000	89.3	60.0	120	
Imazalil	0.000	<0.100		0.371	0.400	92.6	60.0	120	
Imidacoprid	0.000	<0.200		0.72	0.800	90.8	60.0	120	
Kresoxim-methyl	0.000	<0.200		0.749	0.800	93.7	60.0	120	
Malathion	0.000	<0.100		0.364	0.400	91.0	60.0	120	
Metalaxy	0.000	<0.100		0.369	0.400	92.1	60.0	120	
Methiocarb	0.000	<0.100		0.367	0.400	91.8	60.0	120	
Methomyl	0.000	<0.200		0.666	0.800	83.2	60.0	120	
MGK264	0.000	<0.100		0.364	0.400	91.1	50.0	150	
Mycobutanil	0.000	<0.100		0.360	0.400	90.1	60.0	120	
Naled	0.000	<0.250		0.87	1.000	87.7	50.0	150	
Oxamyl	0.000	< 0.500		1.911	2.000	95.5	60.0	120	
Padobutrazole	0.000	<0.200		0.715	0.800	89.4	60.0	120	
Parathion-Methyl	0.000	<0.200		0.728	0.800	91.0	50.0	150	
Permethrin	0.000	<0.100		0.35	0.400	88.8	50.0	150	
Phosmet	0.000	<0.100		0.351	0.400	87.9	50.0	150	
Pperonyl butoxide	0.000	<0.500		1.739	2.000	87.0	60.0	120	
Prallethrin	0.000	<0.100		0.368	0.400	91.9	60.0	120	
Propiconazole	0.000	<0.200		0.734	0.800	91.7	60.0	120	
Propoxur	0.000	<0.100		0.374	0.400	93.5	60.0	120	
Pyrethrin (Summe)	0.000	<0.100		0.377	0.413	91.2	60.0	120	
Pyridaben	0.000	<0.100		0.349	0.400	87.3	50.0	150	
Spinosad	0.000	<0.100		0.319	0.388	82.2	50.0	150	
Spiromesifen	0.000	<0.100		0.363	0.400	90.7	60.0	120	
Spirotetramat	0.000	<0.100		0.369	0.400	92.2	60.0	120	
Spiroxamine	0.000	<0.200		0.732	0.800	91.4	60.0	120	
Tebuconazole	0.000	<0.200		0.72	0.800	90.4	60.0	120	
Thiadoprid	0.000	<0.100		0.374	0.400	93.5	60.0	120	
Thiamethoxam	0.000	<0.100		0.359	0.400	89.8	60.0	120	
Trifloxystrobin	0.000	<0.100		0.360	0.400	89.9	60.0	120	

12423 NE Whitaker Way
 Portland, OR 97230

503-254-1794

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#:
OR100028
Purchase Order:
Received:
10/11/22 12:56

Revision: 3 Document ID. 3120
LegacyID: CFLC21WorksheetValdated 10/30/2020

AOAC2007.1 \& EN 15662			Units: $\mathrm{mg} / \mathrm{Kg}$				Batch ID 2208761				
Matrix Spke/Matri	cate Re						Sample ID:	22.0121770	001		
Analyte	Result	MSRes	MSD Res	Spike	RPD\%	Limit	MS\% Re	MSD\% Re		mits	Notes
Abamectin	0.000	0.638	0.648	1.000	1.6\%	<30	63.8\%	64.8\%	50	150	
Acephate	0.000	0.605	0.654	1.000	7.8\%	<30	60.5\%	65.4\%	50	150	
Acequinocyl	0.000	1.50	1.570	4.000	4.5\%	<30	37.5\%	39.2\%	50	- 150	Q
Acetamiprid	0.000	0.347	0.354	0.400	2.0\%	<30	86.8\%	88.5\%	50	150	
Aldicarb	0.000	$0.6 \circledast$	0.718	0.800	7.1\%	<30	83.6\%	89.7\%	50	- 150	
Azoxystrobin	0.000	0.269	0.268	0.400	0.7\%	<30	67.3\%	66.9\%	50	- 150	
Bifenazate	0.000	0.300	0.319	0.40	6.2\%	<30	74.9\%	79.7\%	50	150	
Bfenthrin	0.000	0.200	0.217	0.40	8.3\%	<30	49.9\%	54.2\%	50	150	Q
Boscalid	$0.0 \not 09$	0.683	0.645	0.800	6.4\%	<30	76.8\%	72.0\%	50	- 150	
Carbaryl	0.000	0.300	0.297	0.400	1.1\%	<30	74.9\%	74.1\%	50	150	
Carbofuran	0.000	0.278	0.280	0.40	0.9\%	<30	69.4\%	70.0\%	50	- 150	
काlorantraniliprole	0.000	0.303	0.312	0.400	3.0\%	<30	75.7\%	78.0\%	50	150	
कhlorfenapyr	0.000	1.23	1.067	2.000	14.2\%	< 30	61.5\%	53.4\%	50	150	
कhlorpyrifos	0.000	2.487	2.665	0.400	6.9\%	<30	6218\%	6662\%	50	150	Q
dofentezine	0.000	0.229	0.235	0.40	2.7\%	<30	57.1\%	58.7\%	50	- 150	
Offluthrin	0.000	0.871	0.940	2.000	7.6\%	<30	43.5\%	47.0\%	30	- 150	
oypermethrin	0.000	0.759	0.817	2.000	7.5\%	<30	37.9\%	40.9\%	50	- 150	Q
Daminozide	0.000	0.290	0.318	2.000	9.3\%	<30	14.5\%	15.9\%	30	- 150	Q
Diażnon	0.000	0.205	0.265	0.40	0.4\%	<30	51.3\%	51.1\%	50	- 150	
Dichlorvos	0.000	1.564	1.589	2.000	1.6\%	<30	78.2\%	79.5\%	50	150	
Dimethoate	0.000	0.352	0.358	0.400	1.7\%	< 30	88.1\%	89.6\%	50	- 150	
Ehoprophos	0.000	0.250	0.250	0.400	0.2\%	<30	62.4\%	62.5\%	50	- 150	
Eotenprox	0.000	0.347	0.351	0.800	1.3\%	< 30	43.3\%	43.9\%	50	150	Q
Eloxazle	0.000	0.275	0.271	0.40	1.6\%	< 30	68.8\%	67.7\%	50	- 150	
Fenoxycarb	0.000	0.259	0.269	0.400	3.7\%	<30	64.\%	67.2\%	50	- 150	
Fenpyroximate	0.000	0.308	0.343	0.800	10.6\%	< 30	38.5\%	42.8\%	50	150	Q
Fipronil	0.000	0.519	0.550	0.800	5.7\%	<30	64.9\%	68.7\%	50	- 150	
Honicamid	0.000	0.92	0.910	1.000	1.9\%	<30	92.7\%	91.\%\%	50	- 150	
Hudioxonil	0.000	0.809	0.777	0.800	4.0\%	<30	101.1\%	97.1\%	50	- 150	
Hexythiazox	0.000	0.658	0.665	1.000	1.1\%	<30	65.8\%	66.5\%	50	- 150	
Imazalil	0.000	0.326	0.340	0.400	4.3\%	<30	81.5\%	85.1\%	50	- 150	
Imidacoprid	0.000	0.773	0.808	0.800	4.4\%	< 30	96.6\%	101.0\%	50	- 150	
Kresoxim-methyl	0.000	0.477	0.486	0.800	1.8\%	<30	59.7\%	60.7\%	50	- 150	
Malathion	0.000	0.236	0.241	0.40	2.3\%	<30	58.9\%	60.3\%	50	- 150	
Metalaxy	0.000	0.27	0.284	0.400	3.3\%	<30	68.8\%	71.1\%	50	- 150	
Methiocarb	0.000	0.282	0.281	0.40	0.6\%	<30	70.5\%	70.1\%	50	- 150	
Methomyl	0.000	0.748	0.630	0.800	17.2\%	<30	93.5\%	78.7\%	50	- 150	
MGK264	0.000	0.154	0.158	0.40	2.2\%	<30	38.5\%	39.4\%	50	- 150	Q
Mycobutanil	0.000	0.236	0.279	0.400	16.5\%	<30	59.\%\%	69.7\%	50	- 150	
Naled	0.000	0.634	0.644	1.000	1.5\%	<30	63.4\%	64.4\%	50	- 150	
Oxamyl	0.000	1.904	1.702	2.000	11.2\%	<30	95.2\%	85.1\%	50	- 150	
Padobutrazole	0.000	0.575	$0.6 \subset 2$	0.800	4.6\%	< 30	71.8\%	75.2\%	50	- 150	
Parathion-Methyl	0.000	0.454	0.359	0.800	23.4\%	<30	56.7\%	44.9\%	30	- 150	
Permethrin	0.000	0.212	0.213	0.40	0.5\%	<30	53.\%\%	53.2\%	50	- 150	
Phosmet	0.000	0.283	0.293	0.40	3.4\%	<30	70.7\%	73.2\%	50	150	
Pperonyl butoxide	0.000	1.36	1.377	2.000	3.8\%	< 30	66.2\%	68.8\%	50	- 150	
Prallethrin	0.000	0.197	0.19	0.40	1.6\%	<30	49.1\%	48.3\%	50	- 150	Q
Propiconazole	0.000	0.62	0.634	0.800	2.0\%	<30	77.8\%	79.3\%	50	- 150	
Propoxur	0.000	0.297	0.298	0.40	0.3\%	<30	74.4\%	74.6\%	50	- 150	
Pyrethrin (Summe)	0.000	0.320	0.32	0.413	0.9\%	<30	77.5\%	78.3\%	50	- 150	
Pyridaben	0.000	0.26	0.231	0.40	2.4\%	<30	56.5\%	57.9\%	50	- 150	
Spinosad	0.000	0.230	0.230	0.388	0.1\%	<30	59.3\%	59.4\%	50	- 150	
Spiromesifen	0.000	0.267	0.247	0.400	7.7\%	<30	66.7\%	61.8\%	50	- 150	
Spirotetramat	0.000	0.506	0.52	0.400	3.7\%	<30	1265\%	1313\%	50	- 150	
Spiroxamine	0.000	0.576	0.62	0.800	8.2\%	<30	72.0\%	78.2\%	50	- 150	
Tebuconazole	0.000	0.60	0.649	0.800	7.7\%	<30	75.\%\%	81.1\%	50	- 150	
Thiadoprid	0.000	0.334	0.344	0.40	3.0\%	<30	83.4\%	86.0\%	50	- 150	
Thiamethoxam	0.000	0.358	0.330	0.400	8.2\%	<30	89.6\%	82.5\%	50	- 150	
Trifloxystrobin	0.000	0.243	0.247	0.40	1.5\%	<30	60.9\%	61.8\%	50	- 150	

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

Revision: 1 Document ID: 7148
 Legacy ID: Worksheet Validated 04/20/2021

ND - None Detected at or above MRL
RPD - Relative Percent Differenc
QQ - Limit of Quantitation
Units of Measure:
$\%$ - Percen

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received: 10/11/22 12:56

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results								
J AOAC 2015 V98-6						Batch ID: 2208812		
Sample Duplicate						D: 22-012		
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	<LOQ	<LOQ	0.0077	\%	NA	< 20	Acceptable	
CBDV	0.275	0.274	0.0077	\%	0.216	< 20	Acceptable	
CBE	1.82	1.90	0.0077	\%	4.24	<20	Acceptable	
CBDA	0.934	0.945	0.0077	\%	1.18	< 20	Acceptable	
CBGA	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBG	1.24	1.21	0.0077	\%	2.28	< 20	Acceptable	
CBD	60.6	60.2	0.0077	\%	0.683	<20	Acceptable	
THCV	<LOQ	<LOQ	0.0077	\%	NA	< 20	Acceptable	
d8THCV	<LOQ	<LOQ	0.0077	\%	NA	< 20	Acceptable	
THCVA	<LOQ	<LOQ	0.0077	\%	NA	< 20	Acceptable	
CBN	1.52	1.53	0.0077	\%	0.203	<20	Acceptable	
exo-THC	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
d9THC	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
d8THC	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBL	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
d10THC	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBC	1.99	1.96	0.0077	\%	1.49	<20	Acceptable	
THCA	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBCA	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBLA	<LOQ	<LOQ	0.0077	\%	NA	<20	Acceptable	
CBT	1.08	1.14	0.0077	\%	5.43	<20	Acceptable	

ND - None Detected at or above MRL
RPD - Relative Percent Differenc
OQ - Limit of Quantitation

Units of Measure:

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

Laboratory Quality Control Results								Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:			
Residual Solvents						Batch ID:		2208815			
Method Blank	Result				Laboratory Control Sample			\% Rec	Limits		
Analyte			LOQ	Notes	Result	Spike	Units				
Propane	ND	<	200		641	572	$\mu \mathrm{g} / \mathrm{g}$	112.160		- 120	Notes
Isobutane	ND	<	200		870	731	$\mu \mathrm{g} / \mathrm{g}$	119.0	60	120	
Butane	ND	<	200		849	731	$\mu \mathrm{g} / \mathrm{g}$	116.1	60	120	
2,2-Dimethylpropane	ND	<	200		1190	936	$\mu \mathrm{g} / \mathrm{g}$	127.1	60	- 120	Q1
Methanol	ND	<	200		1650	1650	$\mu \mathrm{g} / \mathrm{g}$	100.0	60	- 120	
Ethylene Oxide	ND	<	30		62.4	56.2	$\mu \mathrm{g} / \mathrm{g}$	111.0	60	- 120	
2-Methylbutane	ND	<	200		1580	1650	$\mu \mathrm{g} / \mathrm{g}$	95.8	60	- 120	
Pentane	ND	<	200		1600	1650	$\mu \mathrm{g} / \mathrm{g}$	97.06	60	- 120	
Ethanol	ND	<	200		1720	1660	$\mu \mathrm{g} / \mathrm{g}$	103.6	70	- 130	
Ethyl Ether	ND	<	200		1640	1630	$\mu \mathrm{g} / \mathrm{g}$	100.6	60	- 120	
2,2-Dimethylbutane	ND	<	30		180	189	$\mu \mathrm{g} / \mathrm{g}$	95.2	60	- 120	
Acetone	ND	<	200		1630	1650	$\mu \mathrm{g} / \mathrm{g}$	98.8	60	- 120	
2-Propanol	ND	<	200		1880	1650	$\mu \mathrm{g} / \mathrm{g}$	113.9	60	- 120	
Ethyl Formate	ND	<	500		1550	1610	$\mu \mathrm{g} / \mathrm{g}$	96.3	70	- 130	
Acetonitrile	ND	<	100		576	504	$\mu \mathrm{g} / \mathrm{g}$	114.3	60	120	
Methyl Acetate	ND	<	500		1850	1630	$\mu \mathrm{g} / \mathrm{g}$	113.5	70	130	
2,3-Dimethylbutane	ND	<	30		170	174	$\mu \mathrm{g} / \mathrm{g}$	97.7	60	- 120	
Dichloromethane	ND	<	60		521	521	$\mu \mathrm{g} / \mathrm{g}$	100.0	60	- 120	
2-Methylpentane	ND	<	30		189	187	$\mu \mathrm{g} / \mathrm{g}$	101.1	60	-120	
MTBE	ND	<	500		1770	1600	$\mu \mathrm{g} / \mathrm{g}$	110.6	70	- 130	
3-Methylpentane	ND	$<$	30		191	188	$\mu \mathrm{g} / \mathrm{g}$	101.6	60	- 120	
Hexane	ND	$<$	30		193	182	$\mu \mathrm{g} / \mathrm{g}$	106.0	60	- 120	
1-Propanol	ND	<	500		1740	1610	$\mu \mathrm{g} / \mathrm{g}$	108.1	70	- 130	
Methylethylketone	ND	<	500		1810	1600	$\mu \mathrm{g} / \mathrm{g}$	113.1	70	- 130	
Ethyl acetate	ND	<	200		1800	1630	$\mu \mathrm{g} / \mathrm{g}$	110.4	60	- 120	
2-Butanol	ND	<	200		1830	1630	$\mu \mathrm{g} / \mathrm{g}$	112.3	60	- 120	
Tetrahydrofuran	ND	<	100		528	506	$\mu \mathrm{g} / \mathrm{g}$	104.3	60	- 120	
Cyclohexane	ND	<	200		1720	1640	$\mu \mathrm{g} / \mathrm{g}$	104.9	60	- 120	
2-methyl-1-propanol	ND	<	500		1720	1620	$\mu \mathrm{g} / \mathrm{g}$	106.2	70	- 130	
Benzene	ND	<	1		5.11	4.93	$\mu \mathrm{g} / \mathrm{g}$	103.7	60	- 120	
\|sopropyl Acetate	ND	<	200		1830	1640	$\mu \mathrm{g} / \mathrm{g}$	111.6	60	- 120	
Heptane	ND	<	200		1640	1630	$\mu \mathrm{g} / \mathrm{g}$	100.6	60	- 120	
1-Butanol	ND	<	500		1670	1600	$\mu \mathrm{g} / \mathrm{g}$	104.4	70	- 130	
Propyl Acetate	ND	<	500		1820	1620	$\mu \mathrm{g} / \mathrm{g}$	112.3	70	- 130	
1,4-Dioxane	ND	<	100		520	493	$\mu \mathrm{g} / \mathrm{g}$	105.5	60	- 120	
2-Ethoxyethanol	ND	<	30		183	171	$\mu \mathrm{g} / \mathrm{g}$	107.0	60	- 120	
Methylisobutylketone	ND	<	500		1700	1620	$\mu \mathrm{g} / \mathrm{g}$	104.9	70	- 130	
3-Methyl-1-butanol	ND	<	500		1690	1610	$\mu \mathrm{g} / \mathrm{g}$	105.0	70	- 130	
Ethylene Glycol	ND	<	200		459	494	$\mu \mathrm{g} / \mathrm{g}$	92.9	60	- 120	
Toluene	ND	<	100		517	506	$\mu \mathrm{g} / \mathrm{g}$	102.2	60	- 120	
\|sobutyl Acetate	ND	<	500		1700	1620	$\mu \mathrm{g} / \mathrm{g}$	104.9	70	- 130	
1-Pentanol	ND	<	500		1550	1610	$\mu \mathrm{g} / \mathrm{g}$	96.3	70	- 130	
Butyl Acetate	ND	<	500		1600	1610	$\mu \mathrm{g} / \mathrm{g}$	99.4	70	- 130	
Ethylbenzene	ND	<	200		1030	996	$\mu \mathrm{g} / \mathrm{g}$	103.4	60	- 120	
m,p-Xylene	ND	$<$	200		1050	1010	$\mu \mathrm{g} / \mathrm{g}$	104.0	60	- 120	
o-Xylene	ND	<	200		989	979	$\mu \mathrm{g} / \mathrm{g}$	101.0	60	- 120	
Cumene	ND	<	30		186	188	$\mu \mathrm{g} / \mathrm{g}$	98.9	60	- 120	
Anisole	ND	<	500		1560	1610	$\mu \mathrm{g} / \mathrm{g}$	96.97	70	- 130	
DMSO	ND	<	500		1490	1600	$\mu \mathrm{g} / \mathrm{g}$	93.1	70	- 130	
1,2-dimethoxyethane	ND	<	50		207	190	$\mu \mathrm{g} / \mathrm{g}$	108.9	70	- 130	
Triethylamine	ND	<	500		1660	1610	$\mu \mathrm{g} / \mathrm{g}$	103.1	70	- 130	
N,N-dimethylformamide	ND	<	150		459	496	$\mu \mathrm{g} / \mathrm{g}$	92.5	70	- 130	
N, N-dimethylacetamide	ND	<	150		477	483	$\mu \mathrm{g} / \mathrm{g}$	98.8	70	- 130	
Pyridine	ND	<	50		163	167	$\mu \mathrm{g} / \mathrm{g}$	97.6	70	- 130	
Sulfolane	ND	<	50		140	161	$\mu \mathrm{g} / \mathrm{g}$	87.0	70	- 130	
1,2-Dichloroethane	ND	$<$	1		1.16	1	$\mu \mathrm{g} / \mathrm{g}$	116.0	70	- 130	
Chloroform	ND	<	1		1.17	1	$\mu \mathrm{g} / \mathrm{g}$	117.0	70	- 130	
Trichloroethylene	ND	<	1		1.17	1	$\mu \mathrm{g} / \mathrm{g}$	117.0	70	- 130	
1,1-Dichloroethane	ND	<	1		1.14		$\mu \mathrm{g} / \mathrm{g}$	114.0	70	130	

Page 11 of 14

[^4]

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

QC - Sample Duplicate							$\begin{array}{r} \text { Revis } \\ \text { Leg } \\ -\mathbf{0 1 1 9 5 7 - 0 0 0} \end{array}$	ent ID: 7087 E33Effective:
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Butane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	< 20	Acceptable	
Methanol	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethylene Oxide	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Pentane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethyl Ether	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Acetone	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2-Propanol	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethyl Formate	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Acetonitrile	ND	ND	100	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Methyl Acetate	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Dichloromethane	ND	ND	60	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2-Methylpentane	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
MTBE	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
3-Methylpentane	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Hexane	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Methylethylketone	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethyl acetate	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2-Butanol	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Tetrahydrofuran	ND	ND	100	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Cyclohexane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2-methyl-1-propanol	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Benzene	ND	ND	1	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Isopropyl Acetate	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Heptane	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1-Butanol	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Propyl Acetate	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1,4-Dioxane	ND	ND	100	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
2-Ethoxyethanol	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Methylisobutylketone	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
3-Methyl-1-butanol	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethylene Glycol	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Toluene	ND	ND	100	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Isobuty Acetate	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1-Pentanol	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Butyl Acetate	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Ethylbenzene	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
m,p-Xylene	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
o-Xylene	ND	ND	200	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Cumene	ND	ND	30	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Anisole	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
DMSO	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1,2-dimethoxyethane	ND	ND	50	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Triethylamine	ND	ND	500	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
N,N-dimethylformamide	ND	ND	150	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
N,N-dimethylacetamide	ND	ND	150	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Pyridine	ND	ND	50	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Sulfolane	ND	ND	50	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1,2-Dichloroethane	ND	ND	1	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Chloroform	ND	ND	1	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Trichloroethylene	ND	ND	1	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
1,1-Dichloroethane	ND	ND	1	$\mu \mathrm{g} / \mathrm{g}$	0.0	<20	Acceptable	
Abbreviations	ND - None Detected at or above MRL					Units of Measure:		
						g- Micr	m or ppm	
	RPD - Relative Percent Difference							
	LOQ - Limit of QuantitationQ1- Quality control result biased high. Only non-detect sa							
						ed.		

Page 12 of 14

[^5]Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

Report Number: 22-012267/D004.R000
Report Date: 10/18/2022
ORELAP\#: OR100028
Purchase Order:
Received:
10/11/22 12:56

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or \% recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
B	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

SD230329-008 page 1 of 2

QA Testing
PharmLabs San Diego Certificate of Analysis
3421 Hancock St, Second Floor, San Diego, CA 92110| License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1| Accreditation \#85368
sample O3DTST224_AMBER_D8 Distillate

CAN+ - Cannabinoids Analysis

Analyzed Apr 04, 2023 | Instrument HPLC-VWD | Method SOP-00
The expanded Uncertainty of the Cannabinoid analysis is approximately $¥ .806 \%$ at the 95% Confidence Level

Analyte	$\begin{aligned} & \text { LOD } \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{mg} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \% \end{aligned}$	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Tetrahydrocannabinol ($\triangle 9-\mathrm{THC}$)	0.003	0.16	UI	UI
$\Delta 8$-tetrahydrocannabinol ($\Delta 8$-THC)	0.004	0.16	94.56	945.60
Cannabicyclol (CBL)	0.002	0.16	ND	ND
Cannabichromene (CBC)	0.002	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Total THC (THCa ${ }^{\text {a }} 0.877+\Delta 9$ THC)			ND	ND
Total THC $+\boldsymbol{\Delta 8} \mathbf{T H C}(\mathrm{THCa} * 0.877+\Delta 9 \mathrm{THC}+\boldsymbol{\Delta 8 T H C})$			94.56	945.60
Total CBD (CBDa $0.877+$ CBD $)$			ND	ND
Total CBG (CBGa* $0.877+$ CBG)			ND	ND
Total Cannabinoids			94.56	945.60

HME - Heavy Metals Detection Analysis

Analyte	$\begin{aligned} & \mathrm{LOD} \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	Result ug/g	$\begin{gathered} \text { Limit } \\ \text { ug/g } \end{gathered}$	Analyte	$\begin{aligned} & \mathrm{LOD} \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \text { Result } \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$
Arsenic (As)	0.0002	0.0005	ND	0.2	Cadmium (Cd)	3.0e-05	0.0005	ND	0.2
Mercury (Hg)	1.0e-05	0.0001	ND	0.1	Lead (Pb)	$1.0 \mathrm{e}-05$	0.00125	ND	0.5

MIBIG - Microbial Testing Analysis

Analyte	$\begin{aligned} & \text { Result } \\ & \mathrm{CFU} / \mathrm{g} \end{aligned}$	Limit	Analyte	$\begin{aligned} & \text { Result } \\ & \text { CFU/g } \end{aligned}$	Limit
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram
Aspergillus niger	ND	ND per 1 gram	Aspergillus terreus	ND	ND per 1 gram

MTO - Mycotoxin Testing Analysis

Analyte	$\begin{aligned} & \text { LOD } \\ & \text { ug/kg } \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { ug/kg } \end{aligned}$	Result ug/kg (ppb)	$\begin{aligned} & \text { Limit } \\ & \mathrm{ug} / \mathrm{kg} \end{aligned}$	Analyte	$\begin{aligned} & \text { LOD } \\ & \text { ug/kg } \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { ug/kg } \end{aligned}$	Result ug/kg (ppb)	$\begin{gathered} \text { Limit } \\ \mathrm{ug} / \mathrm{kg} \end{gathered}$
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

Pharm/Vare cinwas

PharmLabs San Diego | 3421 Hancock St, Second Floor, San Diego, CA 92110 | 619.356.0898 | ISO/IEC 17025:2017 Certification L17-427-1

SD230329-008 page 2 of 2

QA Testing
PES - Pesticides Screening Analysis

RES - Residual Solvents Testing Analysis
Analyzed Apr 04, 2023 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

FVI - Filth \& Foreign Material Inspection Analysis
Analyzed Mar 30, 2023 | Instrument Microscope | Method SOP-010

[^6]

Branden starr

PharmLabs San Diego | 3421 Hancock St, Second Floor, San Diego, CA 92110 | 619.356.0898 | ISO/IEC 17025:2017 Certification L17-427-1

[^0]: prior arrangements have been made.
 Testing in accordance with: OAR 333-007-0430

[^1]:
 prior arrangements have been made.
 Testing in accordance with: OAR 333-007-0410 OAR 333-007-0430

[^2]:
 prior arrangements have been made.
 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

[^3]:
 prior arrangements have been made.
 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

[^4]: prior arrangements have been made.
 Testing in accordance with: OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430

[^5]: prior arrangements have been made.

[^6]: UI Not Identified
 ND Not Detected
 N/A Not Applicable
 N/A Not Applicable
 NT Not Reported
 LOD Limit of Detection
 LOQ Limit oc Q
 <LOQ Detected
 <LOQ Detected
 >LOLOL Above upper limit of linearity
 CFU/g Colony Forming Units per 1 gram

