

Report Number: 22-001139/D014.R000

Report Date: 02/08/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 01/31/22 16:12

Customer: IHC LLC

Product identity: 0102030506LIRVAP200_TG

Client/Metrc ID: .

Laboratory ID: 22-001139-0002

Summary

Potency: Analyte Result (%) Δ8-THC CBE CBD-Total 10.8% Δ8-THC[†] 55.6 CBD THCV THC-A CBD CBD-A 6.12 CBG THCV-A CBD-A 5.32 THC-Total 0.176% CBDV-ACBG-A CBG[†] 4.14 CBDV CBDV-A† 3.61 (Reported in percent of total sample) Δ8-THCV CBDV[†] 1.66 CBT Δ8-THCV 1.55 CBC CBT[†] 0.631 CBC-A CBC CBN 0.569 CBC-A† 0.385 CBN 0.370 CBE[†] 0.309 THCV[†] 0.239 THC-A 0.201 THCV-A† 0.158 CBG-A† 0.132

Customer: IHC LLC

825 NW 16th Ave Portland Oregon 97209

United States of America (USA)

Product identity: 0102030506LIRVAP200_TG

Client/Metrc ID:

Sample Date:

Laboratory ID: 22-001139-0002

Evidence of Cooling: No
Temp: 20.3 °C
Relinquished by: Client

Report Number: 22-001139/D014.R000

Report Date: 02/08/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 01/31/22 16:12

Sample Results

Potency	Method J AOA	C 2015 V98-6 (mod)	Units %	Batch: 2201060	Analyze: 2/4/22 2:55:00 AM
Analyte	As Dry Received weigh	LOQ Notes			Δ8-THCCBN
CDC	•			233	• CBD • CBE
CBC CBC-A [†]	0.569 0.385	0.0887 0.0887			• CBD-A • THCV
CBC-Total†	0.907	0.0687			○ CBG ● THC-A
					● CBDV-A ● THCV-A
CBD CBD-A	6.12 5.32	0.0887 0.0887			○ CBDV ● CBG-A
_					© Δ8-THCV
CBD-Total	10.8	0.167			• CBT
CBDV At	1.66	0.0887			CBCCBC-A
CBDV-A†	3.61	0.0887			● OBC-A
CBDV-Total†	4.79	0.166			
CBE†	0.309	0.0887			
CBG [†]	4.14	0.0887			
CBG-A†	0.132	0.0887			
CBG-Total	4.26	0.166			
CBL [†]	< LOQ	0.0887			
CBL-A [†]	< LOQ	0.0887			
CBL-Total†	< LOQ	0.167			
CBN	0.370	0.0887			
CBT [†]	0.631	0.0887			
Δ8-THC [†]	55.6	0.887			
Δ8-THCV	1.55	0.0887			
Δ9-THC	< LOQ	0.0887			
THC-A	0.201	0.0887			
THC-Total	0.176	0.167			
THCV [†]	0.239	0.0887			
THCV-A [†]	0.158	0.0887			
THCV-Total†	0.378	0.166			
Total Cannabinoids†	81.0				

Report Number: 22-001139/D014.R000

Report Date: 02/08/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 01/31/22 16:12

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

% = Percentage of sample % wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

Report Number: 22-001139/D014.R000

Report Date: 02/08/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 01/31/22 16:12

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Controls: CF023 Rev 02/24/2021 Eff: 03/04/2021 OREAPID: ORS00028

	COWEST TO THE PERSON OF THE PE				A	nielysi	is Req	ueste	d .				PO Number: Project Number: Project Number: Project Number: Project Number: Custom Reporting: Report to State -				
3 C E	Company: IHC Contact: Kyle Farook Serent: 431 NW Flanders st. Ote: Fortland State: UF 2p: 97209 □ Email Results: Gropbox Ph: (61) 608164 □ Fc Results: (1 - CR 59 compounds	sticide Multi-Reddue - 379 compounds		uil Solventa	Jeture & Water Activity	0	nor Years and Mold	cro. E. Coli and Total Coliform	carry Metals	colm					
Lat ID	Client Santale Identification	Date	Time	Petition	*NOOde	(chancy	Section	Moisture	Chrysters	Wiene Ye	Wero: E	iciny M	Mycotos	Other	Sample Type †	Weight (Units)	Comments/Metro ID
1	\$100050506LTRXWPLOS.PV	1/31		1		x							-	-	C		
2	DIOLISOSICE SEKAPSOO_TG	1/31				Х			-			- 5			C		
3	OHOSOTLERVAPEOD-OGK	1/9/				Х									C		
4	DIOSOHLERVAPINO_Vinna	1/31				x									C		
5	010307LIEWAPZOO_lava	1/39				X									C		
6	OLOSO FLERINA PROD. PP	1/81				X	6								C		
7	OILERNAP2CO_ST	1/31				×									C		
8	OILIRYAPZOO_SG	1/31				×							1		C		
9	OILTRVAPEDO_PB	1/31				X									C		
10	OILEAVAP200_06-	1/31				×						- 17			C	- 710	
	Reinspirited by: Date Time		Time			- 19	terlese	De:			D	rte	Th	THE			Leb Use Only:
Kyle Farook 1/31 4:30		gmu I					1 31	ilattia ivina			□ Shipped Vis						

† - Sample Type Codes: Vegetation (v); Isolates (5); Entrict/Concentrate (C); Tincture/Topical (1); Edible (I); Beverage (8)

Samples referenced in Collection Submission Collection Submission on COC (in Supergreen Collection COC) (in Supergreen COC) (i

Report Number:

22-001139/D014.R000

Report Date:

02/08/2022

ORELAP#:

OR100028

Purchase Order:

Received:

01/31/22 16:12

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Control#: CF023 Rev 02/24/2021 Eff: 03/04/2021 QRELAPID: ORGA0028

				A	nelysi	a Reg	ueste	d				Project Number: Project Number: Project Number: Project Number: Custon Reporting: Report to State - METRC or Other: Turnaround time: ME 5 Business Day Standard Turnaround: 3 Business Day Resh Turnaround* Atheris for availability Sampled by:				
Correct HIC Contect Kyle Farook Street 431 NW Flanders st. Chy: Portland stree: OF pp: 97209 If Email Results: dropbox Ph: (51) 808164 Fx tenuits: () Bling If different; beth with enempcollect.cor		- Of 39 compounds	Esticide Multi-Recidus - 379 compounds	33	esidual Solvents	elature & Water Actority		Neroc Yeart and Mold	there. E.Coff and Total Cofform	anny Metals	galink					
ab ID Ohire Sample Identification	Date	Time	Perticide	Pesticide	Potency	Residual	Meditine	Tarpeter	Wiero: Y	Misso. 6	Manny M	Mycotosins	Other:	Sample Type f	Weight (Units)	Comments/Metro ID
OIOTLIRVAP200 Name	1/31				Х					21				С	22 / 4	
MOLOSOGLER WAPEOU_TO	1/31		П		X									С		
DIUBLIRSUGZOO_SP	1/31				X									C	1	
0109LIRSU6200_SG-	1/31				x									C		
01081-2155/06-20006-K	1/31				X									C		
0103LERSUG-200_PB	1/31				X									¢		
ONDEOGOSOGLERVAPZOM-PW	1/31				X									C		
MOLOGOSOGLIRSUGIAN-PW	1/31				X							1		С		
CHOZOSOSOGLER 200_ FV	1/31				x					7				C		
D MOZOGOSOWIERSUGZOO_TG	1/31	Sec.			X									C		
farinquisted by:	Date	Time			a	ented	By:			-	itte	Ti	mé			Lab Use Crity:
Kyle Farook 1/31 4:30			Ami					1/31/22 (6/17		Shipped Vict on EFCRent strop Ovidence of cooling: □ Yes □ Yes - Temps (*C): 2.0.3 Sample in good conditions: □ Yes+□ No □ Cash □ Chock □ CC □ Net: Frelog storage:						

† - Sample Type Codes: Vegetation (V); isolates (S); Extract/Concentrate (C); Tincture/Topical (T); Exible (E); Severage (E)

Samples ashested to Calcular Enterprises with mining property-more consistance or agreement for survival in assentations of territor associated with Mrt COC. By signing "Polingerated by", yet are agreement to discovere

Report Number: 22-001139/D014.R000

Report Date: 02/08/2022 **ORELAP#:** OR100028

Purchase Order:

Received: 01/31/22 16:12

Hemp / Cannabis Usable / Extract / Finished Products Chain of Custody Record

Revision: 4.00 Control#: CF023 Rev 02/24/2021 Eff: 02/04/2021 ORELAP IC: ORB00028

						A	naiysi	is Req	ueste	d				in the	Wanter	
Company: IHC Contact: Kyle Harook Screet: 431 NW Flanders st. Obs: Portland State: UF 3px 97209 □ Email Results: dropbox Po: (61) 606164 □ Fx Results: 1 BEllog (FdHeren) Deth/6/Thehempcollect.cor		-OR 59 compounds	Multi-Residue - 379 compounds		Solvani Solvanov	essure & Water Activity		Acros: Yearst and Model	cro. £.Cod and Total Coliform	eary Metals	Mycoteains	ji.	Project Number: Project Number: Project Number: Custom Reporting: Report to State - METRC or Other: Turneround time: 3 Sestmess Day Rush Turneround* "Check for annifoldity Sempled by:			
ID Client Serveric Identification 21 (0.08071-TE 907200_05K	Done 1/21	Time	Pestodes	Pentode	H Potency	Residual S	Mosture	Terpana	Micro: Yes	Meno: 6.0	Heavy Ma	Mycatasi	Other:	Sample Type T	Weight (URIS)	Comments/Metro (0
12 OLTRSUGZOOLSP	1/51		-		X									C		
43 OILTESUG200_PB	1/31		-	\vdash	x	-		-						C		
4 OLIRSUE200-06	1/31				x									C		
5 MOZOSOLIZBREZOO.TG	-		\vdash	\vdash	x				-					C		
8 OHTLERBPERO ONE	1/31		\vdash		x									C		
7 DIOTERBORZOO_PP	1/31		\vdash	$\overline{}$	Х								- 8	C		
B DILIRCEMZOO_PE	1/31				X									С		
DILIPCRAZEO_SP	1/31				Х									C		
30 OIGS FLTBAC - FV	1/31				×			×				- 2		• V	1	
Relativished for	Dute	Time	-			ectived	Вус			(Do	te	7)	me			Lab Use Ordy:
Kyle Farook 1/31 4:30			9rw				11/2	3114	. No	Carl Charles Carl Carl			Yes 1216 - Temp YC: 20.3			

+ - Sample Type Codes: Vegetation (v) ; Isolates (S) ; Estract/Concentrate (C) ; Tincture/Topical (1) ; Edible (C) ; Beverage (II)

Simples informed to Columbia Laboratoria with an integraph reasonal constitute of agreement per correct on the correct correct of an integraph of the correct correct correct of the correct correct

22-001139/D014.R000 **Report Number:**

Report Date: 02/08/2022 ORELAP#: OR100028

Purchase Order:

Received: 01/31/22 16:12

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

J AOAC 2015 V9	8-6			Bat	ch ID: 2201060		
Laboratory Conf	trol Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDVA	0.185	0.2	%	92.7	85.0 - 115	Acceptable	
CBDV	0.208	0.2	%	104	85.0 - 115	Acceptable	
CBE	0.192	0.2	%	95.9	85.0 - 115	Acceptable	
CBDA	0.210	0.2	%	105	85.0 - 115	Acceptable	
CBGA	0.186	0.2	%	92.9	85.0 - 115	Acceptable	
CBG	0.190	0.2	%	95.2	85.0 - 115	Acceptable	
CBD	0.207	0.2	%	104	85.0 - 115	Acceptable	
THCV	0.187	0.2	%	93.4	85.0 - 115	Acceptable	
d8THCV	0.181	0.2	%	90.7	85.0 - 115	Acceptable	
THCVA	0.183	0.2	%	91.6	85.0 - 115	Acceptable	
CBN	0.204	0.2	%	102	85.0 - 115	Acceptable	
exo-THC	0.174	0.2	%	87.2	85.0 - 115	Acceptable	
d9THC	0.200	0.2	%	99.8	85.0 - 115	Acceptable	
d8THC	0.176	0.2	%	88.2	85.0 - 115	Acceptable	
CBL	0.180	0.2	%	89.9	85.0 - 115	Acceptable	
CBC	0.184	0.2	%	91.8	85.0 - 115	Acceptable	
THCA	0.200	0.2	%	99.9	85.0 - 115	Acceptable	
CBCA	0.189	0.2	%	94.4	85.0 - 115	Acceptable	
CBLA	0.200	0.2	%	100	85.0 - 115	Acceptable	
CBT	0.226	0.2	%	113	85.0 - 115	Acceptable	

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDVA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBDV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBE	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBDA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBGA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBG	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBD	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d8THCV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCVA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBN	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
exo-THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d9THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
d8THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBL	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBLA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBT	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

22-001139/D014.R000 **Report Number:**

Report Date: 02/08/2022 ORELAP#: OR100028

Purchase Order:

Received: 01/31/22 16:12

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

J AOAC 2015	V98-6			,				
Sample Dupli	cate				Samp	ole ID: 22-00113	9-0001	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	3.77	3.76	0.1	%	0.129	< 20	Acceptable	
CBDV	1.74	1.74	0.1	%	0.178	< 20	Acceptable	
CBE	0.336	0.331	0.1	%	1.55	< 20	Acceptable	
CBDA	5.57	5.56	0.1	%	0.181	< 20	Acceptable	
CBGA	0.143	0.143	0.1	%	0.145	< 20	Acceptable	
CBG	4.34	4.33	0.1	%	0.264	< 20	Acceptable	
CBD	6.51	6.40	0.1	%	1.73	< 20	Acceptable	
THCV	0.272	0.266	0.1	%	2.12	< 20	Acceptable	
d8THCV	1.65	1.64	0.1	%	0.661	< 20	Acceptable	
THCVA	0.180	0.179	0.1	%	0.427	< 20	Acceptable	
CBN	0.410	0.404	0.1	%	1.46	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
d8THC	57.9	57.8	0.1	%	0.132	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBC	0.593	0.604	0.1	%	1.87	< 20	Acceptable	
THCA	0.212	0.213	0.1	%	0.245	< 20	Acceptable	
CBCA	0.420	0.420	0.1	%	0.0228	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBT	0.782	0.644	0.1	%	19.5	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

22-001139/D014.R000 **Report Number:**

Report Date: 02/08/2022 ORELAP#: OR100028

Purchase Order:

01/31/22 16:12 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

Sample ID SD230329-008 (71349)		Matrix Concentrate (Inhalable Cannabis Good)
Tested for The Hemp Collect		
Sampled -	Received Mar 28, 2023	Reported Apr 05, 2023
Analyses executed CAN+ RES MIR	RIG MTO DES HME EVI	

Laboratory note: The estimated concentration of the unknown peak in the sample is 6.60% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or 49-THC. At this time there are no reference standards available for (+)d8-THC is o different compound from the main (-)d8-THC cannobinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is problematic for the scientific community as a whole. PharmLabs believes the unidentified peak to be a combination of (+)d8-THC with the majority, if not all, of the concentration being (+)d8-THC. Total (+/-) D8 Concentration is estimated to be 94.56%.

CAN+ - Cannabinoids Analysis

Analyzed Apr 04, 2023 | Instrument HPLC-VWD | Method SOP-001

The expanded Uncertainty of the Cannabinoid analysis is approximately **3.806**% at the 95% Confidence Level

Analyte	LOD mg/g	LOQ mg/g	Result	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ 8-tetrahydrocannabinol (Δ 8-THC)	0.004	0.16	94.56	945.60
Cannabicyclol (CBL)	0.002	0.16	ND	ND
Cannabichromene (CBC)	0.002	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Total THC (THCa * 0.877 + Δ9THC)			ND	ND
Total THC + Δ8THC (THCa * 0.877 + Δ9THC + Δ8THC)			94.56	945.60
Total CBD (CBDa * 0.877 + CBD)			ND	ND
Total CBG (CBGa * 0.877 + CBG)			ND	ND
Total Cannabinoids			94.56	945.60

HME - Heavy Metals Detection Analysis

Analyzed Apr 04, 2023 | Instrument ICP/MSMS | Method SOP-005

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Arsenic (As)	0.0002	0.0005	ND	0.2	Cadmium (Cd)	3.0e-05	0.0005	ND	0.2
Mercury (Hg)	1.0e-05	0.0001	ND	0.1	Lead (Pb)	1.0e-05	0.00125	ND	0.5

MIBIG - Microbial Testing Analysis

Analyzed Mar 31, 2023 | Instrument qPCR and/or Plating | Method SOP-007

Analyzed rial bi, 2025 motionient quarteria, or rialing	11100100001				
Analyte	Result CFU/g	Limit	Analyte	Result CFU/g	Limit
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram
Acporaillus pigor	ND	ND por 1 gram	Asparaillus torrous	ND	ND por 1 gram

MTO - Mycotoxin Testing Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS | Method SOP-004

Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg	Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULOL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Wed, 05 Apr 2023 10:13:00 -0700

PES - Pesticides Screening Analysis

Analyzed Apr 04, 2023 | Instrument LC/MSMS GC/MSMS | Method SOP-003

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Aldicarb	0.0078	0.02	ND	0.0078	Carbofuran	0.01	0.02	ND	0.01
Dimethoate	0.01	0.02	ND	0.01	Etofenprox	0.02	0.1	ND	0.02
Fenoxycarb	0.01	0.02	ND	0.01	Thiachloprid	0.01	0.02	ND	0.01
Daminozide	0.01	0.03	ND	0.01	Dichlorvos	0.02	0.07	ND	0.02
Imazalil	0.02	0.07	ND	0.02	Methiocarb	0.01	0.02	ND	0.01
Spiroxamine	0.01	0.02	ND	0.01	Coumaphos	0.01	0.02	ND	0.01
Fipronil	0.01	0.1	ND	0.01	Paclobutrazol	0.01	0.03	ND	0.01
Chlorpyrifos	0.01	0.04	ND	0.01	Ethoprophos (Prophos)	0.01	0.02	ND	0.01
Baygon (Propoxur)	0.01	0.02	ND	0.01	Chlordane	0.04	0.1	ND	0.04
Chlorfenapyr	0.03	0.1	ND	0.03	Methyl Parathion	0.02	0.1	ND	0.02
Mevinphos	0.03	0.08	ND	0.03	Abamectin	0.03	0.08	ND	0.1
Acephate	0.02	0.05	ND	0.1	Acetamiprid	0.01	0.05	ND	0.1
Azoxystrobin	0.01	0.02	ND	0.1	Bifenazate	0.01	0.05	ND	0.1
Bifenthrin	0.02	0.35	ND	3	Boscalid	0.01	0.03	ND	0.1
Carbaryl	0.01	0.02	ND	0.5	Chlorantraniliprole	0.01	0.04	ND	10
Clofentezine	0.01	0.03	ND	0.1	Diazinon	0.01	0.02	ND	0.1
Dimethomorph	0.02	0.06	ND	2	Etoxazole	0.01	0.05	ND	0.1
Fenpyroximate	0.02	0.1	ND	0.1	Flonicamid	0.01	0.02	ND	0.1
Fludioxonil	0.01	0.05	ND	0.1	Hexythiazox	0.01	0.03	ND	0.1
Imidacloprid	0.01	0.05	ND	5	Kresoxim-methyl	0.01	0.03	ND	0.1
Malathion	0.01	0.05	ND	0.5	Metalaxyl	0.01	0.02	ND	2
Methomyl	0.02	0.05	ND	1	Myclobutanil	0.02	0.07	ND	0.1
Naled	0.01	0.02	ND	0.1	Oxamyl	0.01	0.02	ND	0.5
Permethrin	0.01	0.02	ND	0.5	Phosmet	0.01	0.02	ND	0.1
Piperonyl Butoxide	0.02	0.06	ND	3	Propiconazole	0.03	0.08	ND	0.1
Prallethrin	0.02	0.05	ND	0.1	Pyrethrin	0.05	0.41	ND	0.5
Pyridaben	0.02	0.07	ND	0.1	Spinosad A	0.01	0.05	ND	0.1
Spinosad D	0.01	0.05	ND	0.1	Spiromesifen	0.02	0.06	ND	0.1
Spirotetramat	0.01	0.02	ND	0.1	Tebuconazole	0.01	0.02	ND	0.1
Thiamethoxam	0.01	0.02	ND	5	Trifloxystrobin	0.01	0.02	ND	0.1
Acequinocyl	0.02	0.09	ND	0.1	Captan	0.01	0.02	ND	0.7
Cypermethrin	0.02	0.1	ND	1	Cyfluthrin	0.04	0.1	ND	2
Fenhexamid	0.02	0.07	ND	0.1	Spinetoram J,L	0.02	0.07	ND	0.1
Pentachloronitrobenzene	0.01	0.1	ND	0.1					

RES - Residual Solvents Testing Analysis

Analyzed Apr 04, 2023 | Instrument GC/FID with Headspace Analyzer | Method SOP-006

Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Propane (Prop)	0.4	40.0	ND	5000.0	Butane (But)	0.4	40.0	ND	5000.0
Methanol (Metha)	0.4	40.0	ND	3000.0	Ethylene Oxide (EthOx)	0.4	0.8	ND	1.0
Pentane (Pen)	0.4	40.0	ND	5000.0	Ethanol (Ethan)	0.4	40.0	ND	5000.0
Ethyl Ether (EthEt)	0.4	40.0	ND	5000.0	Acetone (Acet)	0.4	40.0	ND	5000.0
Isopropanol (2-Pro)	0.4	40.0	ND	5000.0	Acetonitrile (Acetonit)	0.4	40.0	ND	410.0
Methylene Chloride (MetCh)	0.4	0.8	1.0	1.0	Hexane (Hex)	0.4	40.0	ND	290.0
Ethyl Acetate (EthAc)	0.4	40.0	ND	5000.0	Chloroform (Clo)	0.4	0.8	ND	1.0
Benzene (Ben)	0.4	0.8	ND	1.0	1-2-Dichloroethane (12-Dich)	0.4	0.8	ND	1.0
Heptane (Hep)	0.4	40.0	ND	5000.0	Trichloroethylene (TriClEth)	0.4	0.8	ND	1.0
Toluene (Toluene)	0.4	40.0	ND	890.0	Xulenes (Xul)	0.4	40.0	ND	2170.0

FVI - Filth & Foreign Material Inspection Analysis

Analyzed Mar 30, 2023 | Instrument Microscope | Method SOP-010

Analyte / Limit	Result	Analyte / Limit	Result
> 1/4 of the total sample area covered by sand, soil, cinders, or dirt	ND	> 1/4 of the total sample area covered by mold	ND
> 1 insect fragment, 1 hair, or 1 count mammalian excreta per 3q	ND	> 1/4 of the total sample area covered by an imbedded foreign material	ND

UI Not Identified
ND Not Detected
NA Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
«LOQ Detected
»ULOL Above upper limit of linearity
CFU/g Colony Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Stark

Report Number: 23-000691/D002.R001

Report Date: 01/26/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 01/17/23 14:16

This is an amended version of report# 23-000691/D002.R000.

0.0825

Reason: Updated report format.

Customer: IHC LLC

Product identity: 01LIR209_TG

Client/Metrc ID:

Laboratory ID: 23-000691-0010

Summary

Potency:				
Analyte	Result (%)		ODD T-1-1	07.00/
CBD-A	30.4	CBD-ACBDV-A	CBD-Total	27.3%
CBDV-A	23.1	• THCV-A		
THCV-A	4.78	• THC-A	THC-Total	4.37%
THC-A	4.71	CBC-A		
CBC-A	1.75	CBG-A	(Reported in pe	rcent of total sample)
CBG-A	0.979	CBD		
CBD	0.629	• Δ9-THC		
Δ9-THC	0.241	• THCV		
THCV	0.218	• CBG		

Residual Solvents:

Analyte		_imits Status μg/g)
Butane	4840	
Butanes (sum)	4840 5	5000 pass

Metals:

CBG

Less than LOQ for all analytes.

Report Number: 23-000691/D002.R001

Report Date: 01/26/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 01/17/23 14:16

Customer: IHC LLC

825 NW 16th Ave Portland Oregon 97209 United States of America (USA)

Product identity: 01LIR209_TG

Client/Metrc ID:

Sample Date:

Laboratory ID: 23-000691-0010

Evidence of Cooling: No
Temp: 20 °C
Relinquished by: ramos

Sample Results

Potency	Method: J AOAC 201	5 V98-6 (mod) ^þ	Units %	Batch: 2300680	Analyze: 1/21/23	5:22:00 AM
Analyte	As Dry		otes			
000	Received weig					CBD-A CBD\(A)
CBC	< LOQ	0.0682				CBDV-ATHCV-A
CBC-A	1.75	0.0682				THCV-A
CBC-Total	1.54	0.128				CBC-A
CBD	0.629	0.0682				O CBG-A
CBD-A	30.4	0.682				CBD
CBD-Total	27.3	0.666				Δ9-THC
CBDV	< LOQ	0.0682				THCV
CBDV-A	23.1	0.682				CBG
CBDV-Total	20.0	0.659				
CBE	< LOQ	0.0682				
CBG	0.0825	0.0682				
CBG-A	0.979	0.0682				
CBG-Total	0.942	0.127				
CBL	< LOQ	0.0682				
CBL-A	< LOQ	0.0682				
CBL-Total	< LOQ	0.128				
CBN	< LOQ	0.0682				
CBT	< LOQ	0.0682				
Δ10-THC-9R	< LOQ	0.0682				
Δ8-THC	< LOQ	0.0682				
Δ8-THCV	< LOQ	0.0682				
Δ9-THC	0.241	0.0682				
exo-THC	< LOQ	0.0682				
THC-A	4.71	0.0682				
THC-Total	4.37	0.128				
THCV	0.218	0.0682				
THCV-A	4.78	0.0682				
THCV-Total	4.41	0.127				
Total Cannabinoids	66.9					

23-000691/D002.R001 **Report Number:**

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

Received: 01/17/23 14:16

Solvents	Method:	Residua	l Solve	ents by	GC/MS ^þ	Units μg/g Batch 2	300722	Analyz	e 01/24	4/23 1	12:13 PM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ S	tatus	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	< LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	4840	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	4840		200		Е
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	< LOQ	2170	600	pass	

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Arsenic	< LOQ	0.200	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass
Cadmium	< LOQ	0.200	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass
Lead	< LOQ	0.500	mg/kg	0.0775	2300594	01/18/23 AOAC 2013.06 (mod.) ^p	pass
Mercury	< LOQ	0.100	mg/kg	0.0388	2300594	01/18/23 AOAC 2013.06 (mod.) ^b	pass

Report Number: 23-000691/D002.R001

Report Date: 01/26/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 01/17/23 14:16

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

p = ISO/IEC 17025:2017 accredited method.

Units of Measure

 $\mu g/g = Microgram per gram$ mg/kg = Milligram per kilogram = parts per million (ppm)% = Percentage of sample
% wt = $\mu g/g$ divided by 10,000

Glossary of Qualifiers

E: Analyte concentration exceeds the calibration range, results are estimated.

Approved Signatory

Derrick Tanner General Manager

Report Number: 23-000691/D002.R001

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

01/17/23 14:16 Received:

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results Batch ID: 2300680 LCS Result Units Evaluation Notes Analyte CBDVA 0.100 0.106 % % Acceptable Acceptable 80.0 120 120 120 0.104 104 CBDV 0.110 104 103 80.0 CRE Acceptable 0.0968 CRGA 0.096 % Accentable 80.0 120 101 CBG 0.099 0.100 Acceptable % 80.0 CBD 0.097 Acceptable Acceptable 0.109 102 80.0 0.108 d8THCV 0.103 % Acceptable THCVA Acceptable 103 80.0 CBN exo-THC 0.102 0.097 % 80.0 Acceptable Acceptable 0.104 102 0.101 120 104 0.112 90.0 0.105 Acceptable d8THC 0.100 110 0.104 Acceptable CBL 0.108 0.0995 104 99.5 120 120 80.0 9S-HHC 0.100 % Acceptable 80.0 d10THC Acceptable 0.0471 80.0 CBC 0.107 0.104 % 80.0 Acceptable 0.100 Acceptable Acceptable 9R-HF THCA 0.0889 % 88.9 80.0 120 CBCA Acceptable 103

104

104

%

0.105

0.100

80.0

80.0

80.0

Acceptable Acceptable

120

CBT 0.109 0.110 0.105 104 110 Acceptable 80.0 d9THCO Method Blank 0.100 Acceptable LOQ Units % Limits < 0.0077 Evaluation <LOQ Acceptable CBDV <1.00 0.0077 < 0.0077 Acceptable CBE <LOQ <LOQ 0.0077 < 0.0077 Acceptable Acceptable 0.0077 Acceptab CBG CBD 0.0077 Acceptable Acceptable <LOQ < 0.0077 <1.00 0.0077 < 0.0077 0.0077 <LOQ < 0.0077 Acceptable d8THCV <100 0.0077 % < 0.0077 Acceptable THCVA <LOQ 0.0077 < 0.0077 Acceptable CBN <LOC 0.0077 < 0.0077 Acceptable Acceptable exo-THC <LOQ 0.0077 < 0.0077 d9THC <1.00 0.0077 < 0.0077 Acceptable <LOQ <LOQ 0.0077 < 0.0077 < 0.0077 Acceptable Acceptable CBL 9S-HHC <LOC 0.0077 < 0.007 d10THC 0.0077 < 0.0077 <LOQ Acceptable <LOC 0.0077 < 0.0077 Acceptable <LOQ 0.0077 < 0.0077 Acceptable THCA <1.00 0.0077 % < 0.0077 Acceptable <LOQ Acceptable CBLA <LOQ 0.0077 < 0.0077 Acceptable d8THC0 <LOQ 0.0077 < 0.0077 Acceptable CBT <LOQ 0.0077 < 0.0077 Acceptable 0.0077 Acceptable

ND - None Detected at or above MRI RPD - Relative Percent Difference LOO - Limit of Quantitation

0.106

0.108

0.104

Units of Measure:

CBLA

d8THCC

23-000691/D002.R001 **Report Number:**

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

Received: 01/17/23 14:16

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

Laboratory Quality Control Results

J AOAC 2015 V98-6					Ba	tch ID: 2300680		
Sample Duplicate					San	nple ID: 23-000673	-0001	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDVA	0.0236	0.0235	0.077	%	0.271	< 20	Acceptable	
CBDV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBE	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBDA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBGA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBG	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBD	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THCV	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBN	0.0340	0.0342	0.077	%	0.526	< 20	Acceptable	
exo-THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d9THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THC	0.189	0.172	0.077	%	9.34	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
9S-HHC	39.6	38.5	0.077	%	2.70	< 20	Acceptable	
d10THC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
9R-HHC	36.9	35.2	0.077	%	4.96	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBLA	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d8THCO	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
CBT	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	
d9THCO	<loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.077	%	NA	< 20	Acceptable	

ND - None Detected at or above MRL

RPD - Relative Percent Difference

LOQ - Limit of Quantitation

R2 - Sample replicates RPD non-calculable, as only one replicate is within analytical range.

Units of Measure:

23-000691/D002.R001 **Report Number:**

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

Received: 01/17/23 14:16

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

			, ~~	ity Contro	Ji itesuits							
Residual Solvents						Bat	ch ID:	230072	22			
Method Blank					Laborator	y Control Sa	ample					
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	- 1	imi	its	Notes
Propane	ND	<	200		480	572	μg/g	83.9	60	-	120	
sobutane	ND	<	200		623	731	μg/g	85.2	60		120	
Butane	ND	<	200		592	731	μg/g	81.0	60		120	
2,2-Dimethylpropane	ND	<	200		812	936	μg/g	86.8	60	,	120	
Methanol	ND	<	200		1410	1620	μg/g	87.0	60	i	120	
Ethylene Oxide	ND	<	30		49	56.2	μg/g	87.2	60	ı	120	
2-Methylbutane	ND	<	200		1330	1610	μg/g	82.6	60	ı	120	
Pentane	ND	<	200		1330	1600	μg/g	83.1	60	١	120	
thanol	ND	<	200		1400	1610	μg/g	87.0	70	٠	130	
Ethyl Ether	ND	<	200		1340	1630	μg/g	82.2	60	٠	120	
2,2-Dimethylbutane	ND	<	30		138	171	μg/g	80.7	60	•	120	
Acetone	ND	<	200		1340	1630	μg/g	82.2	60	•	120	
2-Propanol	ND	<	200		1440	1620	μg/g	88.9	60	٠	120	
thyl Formate	ND	<	500		1380	1670	μg/g	82.6	70	٠	130	
Acetonitrile	ND ND	<	100		409	498	μg/g	82.1	60	Ŀ	120	
Methyl Acetate	ND ND	<	500		1460	1730	μg/g	84.4	70	Ŀ	130	
2,3-Dimethylbutane	ND ND	<	30		135	171	μg/g	78.9	60	Ŀ	120	
Dichloromethane	ND ND	<	60		406	483	μg/g	84.1	60	Ŀ	120	
2-Methylpentane	ND ND	<	30		146	168	μg/g	86.9	60	Ŀ	120	
MTBE 3-Methylpentane	ND ND	<	500 30		1520 125	1650 167	μg/g	92.1 74.9	70 60	Ŀ	130 120	-
	ND ND		30				μg/g	97.8		Ŀ		
Hexane 1-Propanol	ND ND	<	500		178 1420	182 1620	μg/g	87.7	60 70	Ŀ	120 130	
Methylethylketone	ND ND	<	500		1330	1620	μg/g	82.1	70	Ė	130	
Ethyl acetate	ND ND	<	200		1360	1610	μg/g	84.5	60	Ė	120	
2-Butanol	ND ND	- <	200		1430	1600	μg/g μg/g	89.4	60	Ŀ	120	
Tetrahydrofuran	ND ND	<	100		397	483	μg/g μg/g	82.2	60	÷	120	
Cyclohexane	ND ND	~	200		1300	1610	μg/g	80.7	60	Ė	120	
2-methyl-1-propanol	ND ND		500		1360	1620	μg/g	84.0	70	÷	130	
Benzene	ND ND	· ·	1		4.42	5.02	μg/g	88.0	60	-	120	
sopropyl Acetate	ND ND	<	200		1450	1620	μg/g	89.5	60	-	120	
Heptane	ND	<	200		1280	1610	μg/g	79.5	60	-	120	
1-Butanol	ND	<	500		1450	1630	μg/g	89.0	70	-	130	
Propyl Acetate	ND	<	500		1310	1610	μg/g	81.4	70	-	130	
1.4-Dioxane	ND	<	100		390	491	μg/g	79.4	60	-	120	
2-Ethoxyethanol	ND	<	30		296	181	μg/g	163.5	60	-	120	01
Methylisobutylketone	ND	<	500		1260	1620	μg/g	77.8	70	-	130	
3-Methyl-1-butanol	ND	<	500		1380	1630	μg/g	84.7	70		130	
Ethylene Glycol	ND	<	200		652	484	μg/g	134.7	60		120	Q1
Toluene	ND	<	100		373	485	μg/g	76.9	60		120	
sobutyl Acetate	ND	<	500		1320	1630	μg/g	81.0	70		130	
1-Pentanol	ND	<	500		1330	1620	μg/g	82.1	70		130	
Butyl Acetate	ND	<	500		1280	1620	μg/g	79.0	70		130	
thylbenzene	ND	<	200		712	969	μg/g	73.5	60	i	120	
m,p-Xylene	ND	<	200		720	994	μg/g	72.4	60	ı	120	
o-Xylene	ND	<	200		694	967	μg/g	71.8	60	-	120	
Cumene	ND	<	30		126	171	μg/g	73.7	60	_	120	
Anisole	ND	<	500		1120	1630	μg/g	68.7	70	-	130	Q6
OMSO	ND	<	500		2220	1680	μg/g	132.1	70	Ŀ	130	Q1
,2-dimethoxyethane	ND	<	50		147	169	μg/g	87.0	70	-	130	
riethylamine	ND	<	500		1340	1630	μg/g	82.2	70	-	130	
N,N-dimethylformamide	ND	<	150		573	482	μg/g	118.9	70	-	130	
N,N-dimethylacetamide	ND	<	150		533	510	μg/g	104.5	70	-	130	
Pyridine	ND	<	50		194	203	μg/g	95.6	70	-	130	
Sulfolane	ND	<	50		198	172	μg/g	115.1	70	-	130	
1,2-Dichloroethane	ND	<	1		0.857	1	μg/g	85.7	70	Ŀ	130	
hloroform	ND	<	1		0.892	1	μg/g	89.2	70	Ŀ	130	
Trichloroethylene	ND	<	1		0.93	1	μg/g	93.0	70	-	130	1

23-000691/D002.R001 **Report Number:**

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

Received: 01/17/23 14:16

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

QC - Sample Duplicate					Sample ID:	23-000158-0002	
Analyte	Result	Org. Result	LOQ Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
sobutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30 μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND ND	200 μg/g	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND ND	100 μg/g	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND ND	30 μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND ND	ND ND	60 μg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND ND	ND ND		0.0	< 20	Acceptable	
Z-ivietnyipentane MTBE	ND ND	ND ND		0.0	< 20		
3-Methylpentane	ND ND	ND ND		0.0	< 20	Acceptable Acceptable	-
Hexane	ND	ND	30 μg/g	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1 μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200 μg/g	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100 μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Methylisobutylketone	ND	ND	500 μg/g	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	100 μg/g	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500 μg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200 μg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30 μg/g	0.0	< 20	Acceptable	
Anisole	ND	ND	500 μg/g	0.0	< 20	Acceptable	
DMSO	ND	ND	500 μg/g	0.0	< 20	Acceptable	i
1,2-dimethoxyethane	ND	ND ND	50 μg/g	0.0	< 20	Acceptable	
Triethylamine	ND	ND ND	500 μg/g	0.0	< 20	Acceptable	
N,N-dimethylformamide	ND ND	ND ND	150 μg/g	0.0	< 20	Acceptable	l .
N,N-dimethylacetamide	ND.	ND ND	150 μg/g	0.0	< 20	Acceptable	
Pyridine	ND ND	ND ND	50 μg/g	0.0	< 20	Acceptable	
Sulfolane	ND	ND ND	50 μg/g	0.0	< 20	Acceptable	
1.2-Dichloroethane	ND ND	ND ND		0.0	< 20	Acceptable	
1,2-Dichioroethane Chloroform	ND ND			0.0	< 20		
	ND ND	ND ND	1 μg/g	0.0	< 20 < 20	Acceptable	
Trichloroethylene		ND	1 μg/g			Acceptable	
1,1-Dichloroethane	ND	ND	1 μg/g	0.0	< 20	Acceptable	l

Abbreviations

Units of Measure:

ND - None Detected at or above MRL RPD - Relative Percent Difference

μg/g- Microgram per gram or ppm

LOQ - Limit of Quantitation

Q1 - Quality control result biased high. Only non-detect samples reported.
Q6 - Quality control outside QC limits. Data acceptable based on remaining QC.

Report Number: 23-000691/D002.R001

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

Received: 01/17/23 14:16

23-000691/D002.R001 **Report Number:**

Report Date: 01/26/2023 ORELAP#: OR100028

Purchase Order:

01/17/23 14:16 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.