|                                                                      | umbia<br>DRATORIES<br>entamus Company  | 12423 NE Whitaker Way<br>Portland, OR 97230<br>503-254-1794 | Report Number:<br>Report Date:<br>ORELAP#:<br>Purchase Order:<br>Received: | 23-001534/D002.R000<br>02/13/2023<br>OR100028<br>02/06/23 10:25 |
|----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|
| Customer:<br>Product identity:<br>Client/Metrc ID:<br>Laboratory ID: | IHC LLC<br>D8-020123<br>23-001534-0004 |                                                             |                                                                            |                                                                 |
|                                                                      |                                        | Summary                                                     |                                                                            |                                                                 |
| Less than LOQ for all                                                | l analytes.                            |                                                             |                                                                            |                                                                 |

## **Microbiology:**

Less than LOQ for all analytes.

Page 1 of 6 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390



IHC LLC

D8-020123

.

No

11.9 UPS

825 NW 16th Ave Portland Oregon 97209

23-001534-0004

United States of America (USA)

**Customer:** 

**Product identity:** 

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794



| Report Number:  | 23-001534/D002.R000 |
|-----------------|---------------------|
| Report Date:    | 02/13/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 02/06/23 10:25      |



## **Sample Results**

| Microbiology                  |        |        |        |         |           |                  |                                      |        |       |
|-------------------------------|--------|--------|--------|---------|-----------|------------------|--------------------------------------|--------|-------|
| Analyte                       | Result | Limits | Units  | LOQ     | Batch     | Analyzed Method  |                                      | Status | Notes |
| Mold (RAPID Petrifilm)        | < LOQ  |        | cfu/g  | 10      | 2301145   | 02/10/23 AOAC 20 | 014.05 (RAPID) <sup></sup>           |        |       |
| Yeast (RAPID Petrifilm)       | < LOQ  |        | _cfu/g | 10      | 2301145   | 02/10/23 AOAC 2  | ( )                                  |        |       |
| Metals                        |        |        |        |         |           |                  |                                      |        |       |
| Analyte                       | Result | Limits | Units  | LOQ     | Batch     | Analyzed Method  |                                      | Status | Notes |
| Arsenic                       | < LOQ  | 0.200  | mg/kg  | 0.0178  | 2301312   | 02/10/23 AOAC 2  | 013.06 (mod.) <sup>þ</sup>           | pass   |       |
| Cadmium                       | < LOQ  | 0.200  | mg/kg  | 0.0178  | 2301312   | 02/10/23 AOAC 2  | 013.06 (mod.) <sup>p</sup>           | pass   |       |
| Lead                          | < LOQ  | 0.500  | mg/kg  | 0.0178  | 2301312   | 02/10/23 AOAC 2  | 013.06 (mod.) <sup>p</sup>           | pass   |       |
| Mercury                       | < LOQ  | 0.100  | mg/kg  | 0.00892 | 2 2301312 | 02/10/23 AOAC 2  | 013.06 (mod.) <sup>p</sup>           | pass   |       |
| Mycotoxins                    |        |        |        |         |           |                  |                                      |        |       |
| Analyte                       | Result | Limits | Units  | LOQ     | Batch     | Analyzed Method  |                                      | Status | Notes |
| Aflatoxin B2 <sup>¥</sup>     | < LOQ  |        | µg/kg  | 5.00    | 2301199   | 02/08/23 AOAC 2  | 007.01 & EN 15662 (mod) <sup>b</sup> |        |       |
| Aflatoxin B1 <sup>¥</sup>     | < LOQ  |        | µg/kg  | 5.00    | 2301199   | 02/08/23 AOAC 2  | 007.01 & EN 15662 (mod) <sup>b</sup> |        |       |
| Aflatoxin G1 <sup>¥</sup>     | < LOQ  |        | µg/kg  | 5.00    | 2301199   | 02/08/23 AOAC 2  | 007.01 & EN 15662 (mod) <sup>b</sup> |        |       |
| Aflatoxin G2 <sup>¥</sup>     | < LOQ  |        | µg/kg  | 5.00    | 2301199   | 02/08/23 AOAC 2  | 007.01 & EN 15662 (mod) <sup>b</sup> |        |       |
| Ochratoxin A <sup>¥</sup>     | < LOQ  | 20.0   | µg/kg  | 5.00    | 2301199   | 02/08/23 AOAC 2  | 007.01 & EN 15662 (mod) <sup>b</sup> | pass   |       |
| Total Aflatoxins <sup>¥</sup> | 0.000  | 20.0   | µg/kg  | 20.0    |           | 02/13/23 AOAC 20 | 007.01 & EN 15662 (mod) <sup>b</sup> | pass   |       |

www.columbialaboratories.com

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.





 Report Number:
 23-001534/D002.R000

 Report Date:
 02/13/2023

 ORELAP#:
 OR100028

 Purchase Order:
 Received:

 02/06/23 10:25
 02/06/23 10:25

### Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

<sup>b</sup> = ISO/IEC 17025:2017 accredited method.

\* = TNI accredited analyte.

#### Units of Measure

cfu/g = Colony forming units per gram μg/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) % wt = μg/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 3 of 6

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

| Columbia<br>LABORATORIES<br>& A Tentamus Company<br>Herry                                                                                                      |                            |                              | ip &     | Cannal                                                     | Po<br>bis:                                   | Usa                           | nd,<br>3-25 | OR<br>4-17 | 972<br>794<br>trac | t / F    | inisi   |                         | Prc           | <br>(<br>                                             | Repoi<br>OREL<br>Purch<br>Recei | rt Dat<br>AP#:<br>ase ( |                 | 23-001534/D002.R00<br>02/13/2023<br>OR100028<br>02/06/23 10:25 |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|----------|------------------------------------------------------------|----------------------------------------------|-------------------------------|-------------|------------|--------------------|----------|---------|-------------------------|---------------|-------------------------------------------------------|---------------------------------|-------------------------|-----------------|----------------------------------------------------------------|--|--------------------------------------------|-----|------------------|-----------------------------------------------------------------------|--|------------------------|--------------------------------|---|--|--------|-------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Com                                                                                                                                                            | pany. The Herno Collect    |                              | _        |                                                            |                                              |                               |             | Ans        | alysis             | Requ     | ested   |                         | 11/2          | 180                                                   | MARCH.                          | ŧн                      | 1111111         |                                                                |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
| Contact: Sale Faritok Address: 431 NW Florders St. City: Portland Static: 08 Zip Code: 97209                                                                   |                            |                              | 209      |                                                            | ę                                            |                               |             |            |                    | 1.10     |         |                         | HCU           | ĩ.                                                    | Batch<br>ampled<br>Raporti      | by                      |                 |                                                                |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
| El Encil Results: Google Drive<br>Ph: (600) - 5000043<br>Stilley Context & Alferenti<br>Nerre: Encil: josi@htehempcollect.com<br>Address:<br>City: State: Zip: |                            | deling Centres of Affrees it |          | alley Contact & Allerent<br>Emot: josi@theberrocollect.com |                                              | mail: josi@thehempcollect.com |             |            |                    |          |         |                         |               |                                                       |                                 |                         |                 |                                                                |  | Perfection Multi-Read tore - 379 computers |     | Acidual Solverts | Maintura & Water Activity                                             |  | VECCO: YEEKS and Model | Mum: E.Coli and Total Coliform | 4 |  | Report | ting Type<br>t to: D -<br>D -<br>Tu | e: D. Compla<br>METRC   D.<br>Other: | na produst   D - Res. Cannabis<br>ince   D - RED<br>DOA   D - USDA  <br>//A// - Business Days):<br>- 380* 1 D - 280* |
| 1941                                                                                                                                                           | )                          | 2000 - D2                    |          | _                                                          | Petrodes OR 55 compounds                     | cides A                       | 4           | uni So     | lure &             | -        | C Years | 100                     | Hearty Metals | Mycotokins                                            |                                 |                         | "Checky         | tor average likely                                             |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
| ab ID                                                                                                                                                          | Client Sample Identifica   | tion                         |          | Sample<br>date                                             | Please                                       | 1                             | Potenty     | Pierie     | Mau                | Terpenes | Muo     | Nur                     | Hear          | N/vo                                                  | Mutertal<br>Type T              | Weight<br>(Unital)      |                 | Comments/Metrc ID                                              |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
|                                                                                                                                                                | 08-5-020123<br>08-P-000123 |                              |          | 02/01/23                                                   | <u>.                                    </u> |                               |             | -          | -                  |          |         |                         | - 22          |                                                       | 1 1                             |                         | diam'r a barris | RL copies of all camples with<br>TribeTokes                    |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
| 1                                                                                                                                                              | 084.6M-080125              |                              | 02/01/21 | 02/01                                                      |                                              |                               |             |            |                    |          |         |                         |               |                                                       |                                 |                         |                 |                                                                |  |                                            | - 0 |                  | -Hease duplicate the 02 copy of D8-Lem w/<br>sample ID: d8-L2M-020123 |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
|                                                                                                                                                                | C8-020123 02/01/2          |                              | a2/01/23 |                                                            |                                              |                               |             |            |                    | ~        |         | ~                       | *             | - 🖸                                                   | 8.5                             |                         |                 |                                                                |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
|                                                                                                                                                                |                            |                              |          |                                                            |                                              |                               |             |            |                    |          |         |                         |               |                                                       |                                 |                         | -               |                                                                |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
|                                                                                                                                                                | licentrics Automatical He  | Bate                         |          | Tene                                                       |                                              |                               | ru-Rea      |            |                    |          | u ta    |                         | Dru           |                                                       | -                               | -                       | [ab]            | the Only:                                                      |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |
| Lauren Plevis 02/01/25 33:00 AM                                                                                                                                |                            |                              | 400      | U                                                          | -                                            | *                             | 21          |            | L                  | 1:2      |         | Evide<br>Sompl<br>Payme | e in good     | soling: [] Yes ]<br>d condition ([]<br>ash ] [] Check | ar D Chert grop at              |                         |                 |                                                                |  |                                            |     |                  |                                                                       |  |                        |                                |   |  |        |                                     |                                      |                                                                                                                      |

\* - Material Type Gales: Plant Material (P) ; Solder () ; Gancentrale/Oritout (C) ; Tectore/Tequal (C); Edite (); ; Beverage (0); ; Vapor Product (v)

Sergific constants in Character Laboratory and Going representation on approximate for previous for previous of the <u>previous of services</u> constants with the <u>COC</u> By agoing "Pullogic back to "pre-services and the <u>previous of services</u> constants with the <u>previous constants</u> const in the tree

Page\_\_\_\_\_ef

Page 4 of 6 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390





| Report Number:  | 23-001534/D002.R000 |
|-----------------|---------------------|
| Report Date:    | 02/13/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 02/06/23 10:25      |



Page 5 of 6 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390





**Report Number:** 23-001534/D002.R000 **Report Date:** 02/13/2023 **ORELAP#:** OR100028 **Purchase Order: Received:** 02/06/23 10:25

Explanation of QC Flag Comments:

| Code | Explanation                                                                                 |
|------|---------------------------------------------------------------------------------------------|
| Q    | Matrix interferences affecting spike or surrogate recoveries.                               |
| Q1   | Quality control result biased high. Only non-detect samples reported.                       |
| Q2   | Quality control outside QC limits. Data considered estimate.                                |
| Q3   | Sample concentration greater than four times the amount spiked.                             |
| Q4   | Non-homogenous sample matrix, affecting RPD result and/or % recoveries.                     |
| Q5   | Spike results above calibration curve.                                                      |
| Q6   | Quality control outside QC limits. Data acceptable based on remaining QC.                   |
| R    | Relative percent difference (RPD) outside control limit.                                    |
| R1   | RPD non-calculable, as sample or duplicate results are less than five times the LOQ.        |
| R2   | Sample replicates RPD non-calculable, as only one replicate is within the analytical range. |
| LOQ1 | Quantitation level raised due to low sample volume and/or dilution.                         |
| LOQ2 | Quantitaion level raised due to matrix interference.                                        |
| В    | Analyte detected in method blank, but not in associated samples.                            |
| B1   | The sample concentration is greater than 5 times the blank concentration.                   |
| B2   | The sample concentration is less than 5 times the blank concentration.                      |

 www.columbialaboratories.com
 Page 6 of 6

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

| Customer:         | IHC LLC        |
|-------------------|----------------|
| Product identity: | 01LIR209_SG    |
| Client/Metrc ID:  |                |
| Laboratory ID:    | 23-000691-0008 |

| Summary |
|---------|
|---------|

| Potency:                                                                           |                                                                                                        |                                                                                                                                                            |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Potency:<br>Analyte<br>CBD-A<br>CBC-A<br>CBG-A<br>THC-A<br>CBD<br>CBDV-A<br>Δ9-THC | Result (%)         58.2         3.16         3.13         2.61         1.35         1.04         0.380 | • CBD-A<br>• CBC-A<br>• CBG-A<br>• CBG-A<br>• CBG-A<br>• THC-A<br>• CBD<br>• CBDV-A<br>• CBDV-A<br>• CBDV-A<br>• CBDV-A<br>• CBDV-A<br>• CBDV-A<br>• CBD-A |  |
| CBG                                                                                | 0.252                                                                                                  | • CBC                                                                                                                                                      |  |
| CBC                                                                                | 0.170                                                                                                  |                                                                                                                                                            |  |

## **Residual Solvents:**

All analytes passing and less than LOQ.

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

### **Pesticides:**

| Result<br>(mg/kg)      | Limits<br>(mg/kg)                 | Status                                    |
|------------------------|-----------------------------------|-------------------------------------------|
| < LOQ for all analytes |                                   |                                           |
|                        |                                   |                                           |
| S.                     |                                   |                                           |
|                        |                                   |                                           |
| S.                     |                                   |                                           |
|                        | (mg/kg)<br>< LOQ for all analytes | (mg/kg) (mg/kg)<br>< LOQ for all analytes |

 Www.columbialaboratories.com
 Page 1 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with:
 OAR 333-007-0430



IHC LLC

.

No

20 °C

ramos

825 NW 16th Ave Portland Oregon 97209

01LIR209\_SG

23-000691-0008

United States of America (USA)

**Customer:** 

**Product identity:** 

Client/Metrc ID:

Sample Date:

Laboratory ID:

Temp:

Evidence of Cooling:

Relinquished by:

12423 NE Whitaker Way Portland, OR 97230 503-254-1794



| Depart Number   | 22 000601/D005 D000 |
|-----------------|---------------------|
| Report Number:  | 23-000691/D005.R000 |
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

Page 2 of 12



# **Sample Results**

| Potency             | Method: J AOAC 201 | 5 V98-6 (mod) <sup>þ</sup> | Units % | Batch: 2300680 | Analyze: 1/21/23 5:07:00 AM |
|---------------------|--------------------|----------------------------|---------|----------------|-----------------------------|
| Analyte             | As Dry             |                            | otes    |                |                             |
|                     | Received weigh     |                            |         |                | CBD-A                       |
| CBC                 | 0.170              | 0.0715                     |         |                | • CBC-A                     |
| CBC-A               | 3.16               | 0.0715                     |         |                | • CBG-A                     |
| CBC-Total           | 2.94               | 0.134                      |         |                | • THC-A                     |
| CBD                 | 1.35               | 0.0715                     |         |                | • CBD                       |
| CBD-A               | 58.2               | 0.715                      |         |                | • CBDV-A                    |
| CBD-Total           | 52.4               | 0.699                      |         |                | Δ9-THC                      |
| CBDV                | < LOQ              | 0.0715                     |         |                | • CBG<br>• CBC              |
| CBDV-A              | 1.04               | 0.0715                     |         |                |                             |
| CBDV-Total          | 0.901              | 0.133                      |         |                |                             |
| CBE                 | < LOQ              | 0.0715                     |         |                |                             |
| CBG                 | 0.252              | 0.0715                     |         |                |                             |
| CBG-A               | 3.13               | 0.0715                     |         |                |                             |
| CBG-Total           | 3.00               | 0.133                      |         |                |                             |
| CBL                 | < LOQ              | 0.0715                     |         |                |                             |
| CBL-A               | < LOQ              | 0.0715                     |         |                |                             |
| CBL-Total           | < LOQ              | 0.134                      |         |                |                             |
| CBN                 | < LOQ              | 0.0715                     |         |                |                             |
| CBT                 | < LOQ              | 0.0715                     |         |                |                             |
| $\Delta 10$ -THC-9R | < LOQ              | 0.0715                     |         |                |                             |
| ∆8-THC              | < LOQ              | 0.0715                     |         |                |                             |
| ∆8-THCV             | < LOQ              | 0.0715                     |         |                |                             |
| ∆9-THC              | 0.380              | 0.0715                     |         |                |                             |
| exo-THC             | < LOQ              | 0.0715                     |         |                |                             |
| THC-A               | 2.61               | 0.0715                     |         |                |                             |
| THC-Total           | 2.67               | 0.134                      |         |                |                             |
| THCV                | < LOQ              | 0.0715                     |         |                |                             |
| THCV-A              | < LOQ              | 0.0715                     |         |                |                             |
| THCV-Total          | < LOQ              | 0.133                      |         |                |                             |
| Total Cannabinoids  | 70.3               |                            |         |                |                             |

www.columbialaboratories.com Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.



. . . . .

12423 NE Whitaker Way Portland, OR 97230 503-254-1794



| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

| Microbiology            |        |              |     |         |                                            |              |
|-------------------------|--------|--------------|-----|---------|--------------------------------------------|--------------|
| Analyte                 | Result | Limits Units | LOQ | Batch   | Analyzed Method                            | Status Notes |
| Mold (RAPID Petrifilm)  | < LOQ  | cfu/g        | 10  | 2300531 | 01/21/23 AOAC 2014.05 (RAPID) <sup>b</sup> |              |
| Yeast (RAPID Petrifilm) | < LOQ  | cfu/g        | 10  | 2300531 | 01/21/23 AOAC 2014.05 (RAPID) <sup>b</sup> |              |
|                         |        |              |     |         |                                            |              |

| Solvents                     | Method: | Residua | I Solve | ents by | GC/MS♭ | Units µg/g Batch 23                  | 300722 | Analyz | <b>e</b> 01/24/23 1 | 2:13 PM |
|------------------------------|---------|---------|---------|---------|--------|--------------------------------------|--------|--------|---------------------|---------|
| Analyte                      | Result  | Limits  | LOQ     | Status  | Notes  | Analyte                              | Result | Limits | LOQ Status          | Notes   |
| 1,4-Dioxane                  | < LOQ   | 380     | 100     | pass    |        | 2-Butanol                            | < LOQ  | 5000   | 200 pass            |         |
| 2-Ethoxyethanol              | < LOQ   | 160     | 30.0    | pass    |        | 2-Methylbutane<br>(Isopentane)       | < LOQ  |        | 200                 |         |
| 2-Methylpentane              | < LOQ   |         | 30.0    |         |        | 2-Propanol (IPA)                     | < LOQ  | 5000   | 200 pass            |         |
| 2,2-Dimethylbutane           | < LOQ   |         | 30.0    |         |        | 2,2-Dimethylpropane<br>(neo-pentane) | < LOQ  |        | 200                 |         |
| 2,3-Dimethylbutane           | < LOQ   |         | 30.0    |         |        | 3-Methylpentane                      | < LOQ  |        | 30.0                |         |
| Acetone                      | < LOQ   | 5000    | 200     | pass    |        | Acetonitrile                         | < LOQ  | 410    | 100 pass            |         |
| Benzene                      | < LOQ   | 2.00    | 1.00    | pass    |        | Butanes (sum)                        | < LOQ  | 5000   | 400 pass            |         |
| Cyclohexane                  | < LOQ   | 3880    | 200     | pass    |        | Ethyl acetate                        | < LOQ  | 5000   | 200 pass            |         |
| Ethyl benzene                | < LOQ   |         | 200     |         |        | Ethyl ether                          | < LOQ  | 5000   | 200 pass            |         |
| Ethylene glycol              | < LOQ   | 620     | 200     | pass    |        | Ethylene oxide                       | < LOQ  | 50.0   | 20.0 pass           |         |
| Hexanes (sum)                | < LOQ   | 290     | 150     | pass    |        | Isopropyl acetate                    | < LOQ  | 5000   | 200 pass            |         |
| Isopropylbenzene<br>(Cumene) | < LOQ   | 70.0    | 30.0    | pass    |        | m,p-Xylene                           | < LOQ  |        | 200                 |         |
| Methanol                     | < LOQ   | 3000    | 200     | pass    |        | Methylene chloride                   | < LOQ  | 600    | 60.0 pass           |         |
| Methylpropane<br>(Isobutane) | < LOQ   |         | 200     |         |        | n-Butane                             | < LOQ  |        | 200                 |         |
| n-Heptane                    | < LOQ   | 5000    | 200     | pass    |        | n-Hexane                             | < LOQ  |        | 30.0                |         |
| n-Pentane                    | < LOQ   |         | 200     |         |        | o-Xylene                             | < LOQ  |        | 200                 |         |
| Pentanes (sum)               | < LOQ   | 5000    | 600     | pass    |        | Propane                              | < LOQ  | 5000   | 200 pass            |         |
| Tetrahydrofuran              | < LOQ   | 720     | 100     | pass    |        | Toluene                              | < LOQ  | 890    | 100 pass            |         |
| Total Xylenes                | < LOQ   |         | 400     |         |        | Total Xylenes and Ethyl<br>benzene   | < LOQ  | 2170   | 600 pass            |         |

| Pesticides              | Method: AOAC | 2007.01 & EN     | 15662 (mod) <sup>p</sup> | Units mg/kg | Batch 2300713 | Analyze 01/24/23 10:07 AM |
|-------------------------|--------------|------------------|--------------------------|-------------|---------------|---------------------------|
| Analyte                 |              | Result           |                          | Limits      | Status        | Notes                     |
| Multi-Residue Pesticide | Profile      | < LOQ for all an | nalytes                  |             |               |                           |

| Metals  |        |        |       |        |         |                                           |              |
|---------|--------|--------|-------|--------|---------|-------------------------------------------|--------------|
| Analyte | Result | Limits | Units | LOQ    | Batch   | Analyzed Method                           | Status Notes |
| Arsenic | < LOQ  | 0.200  | mg/kg | 0.0775 | 2300594 | 01/18/23 AOAC 2013.06 (mod.) <sup>p</sup> | pass         |
| Cadmium | < LOQ  | 0.200  | mg/kg | 0.0775 | 2300594 | 01/18/23 AOAC 2013.06 (mod.) <sup>b</sup> | pass         |
| Lead    | < LOQ  | 0.500  | mg/kg | 0.0775 | 2300594 | 01/18/23 AOAC 2013.06 (mod.) <sup>b</sup> | pass         |
| Mercury | < LOQ  | 0.100  | mg/kg | 0.0388 | 2300594 | 01/18/23 AOAC 2013.06 (mod.) <sup>b</sup> | pass         |

 Www.columbialaboratories.com
 Page 3 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

| Mycotoxins                    |        |        |       |      |         |                                                     |              |
|-------------------------------|--------|--------|-------|------|---------|-----------------------------------------------------|--------------|
| Analyte                       | Result | Limits | Units | LOQ  | Batch   | Analyzed Method                                     | Status Notes |
| Aflatoxin B2 <sup>¥</sup>     | < LOQ  |        | µg/kg | 5.00 | 2300576 | 01/19/23 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> |              |
| Aflatoxin B1 <sup>*</sup>     | < LOQ  |        | µg/kg | 5.00 | 2300576 | 01/19/23 AOAC 2007.01 & EN 15662 (mod) <sup>b</sup> |              |
| Aflatoxin G1 <sup>*</sup>     | < LOQ  |        | µg/kg | 5.00 | 2300576 | 01/19/23 AOAC 2007.01 & EN 15662 (mod) <sup>b</sup> |              |
| Aflatoxin G2 <sup>*</sup>     | < LOQ  |        | µg/kg | 5.00 | 2300576 | 01/19/23 AOAC 2007.01 & EN 15662 (mod) <sup>b</sup> |              |
| Ochratoxin A <sup>*</sup>     | < LOQ  | 20.0   | µg/kg | 5.00 | 2300576 | 01/19/23 AOAC 2007.01 & EN 15662 (mod) <sup>b</sup> | pass         |
| Total Aflatoxins <sup>¥</sup> | 0.000  | 20.0   | µg/kg | 20.0 |         | 01/24/23 AOAC 2007.01 & EN 15662 (mod) <sup>b</sup> | pass         |

Page 4 of 12

 Www.columbialaboratories.com
 Page 4 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430





 Report Number:
 23-000691/D005.R000

 Report Date:
 01/24/2023

 ORELAP#:
 OR100028

 Purchase Order:
 Received:

 01/17/23 14:16
 01/17/23 14:16

### Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

<sup>b</sup> = ISO/IEC 17025:2017 accredited method.

\* = TNI accredited analyte.

### Units of Measure

cfu/g = Colony forming units per gram µg/g = Microgram per gram µg/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = µg/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager

www.columbialaboratories.com

Page 5 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

olumbia A Terrary Compose

# Hemp / Cannabis Usable / Extract / Finished Products

**Chain of Custody Record** 

Revision: 4.00 Controll: CP029 Rev 02/34/2021 Eff: 03/04/2021 CRELAP C: CREL00008

| 45534553445457                                                                                                                                |                                                                                                                                                                                                                                                |         |          |                          |                               |           | naliys         | is Req                   | ueste    | ¢.                 |                                   |            | _        | P                      | 0 Number:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------------------|-------------------------------|-----------|----------------|--------------------------|----------|--------------------|-----------------------------------|------------|----------|------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Contact: kyle@thehempco<br>Street: 431 NW Handers st<br>Ony: Portland State:<br>@ Email Results: dropbox (IH<br>fm; [51] 508164 [] Fx Results | Company: The Hemp Collect<br>Contact: Kyle @thehempcollect.com<br>Street: 431 NW Henders st.<br>Chy: Portland Street: UP 2p 5<br>Portland Street: dropbox (IHC)<br>Phy: (b1 608164 C Fx Results ()<br>street (# efference): 0el@thehempcollect |         | 97209    | strates - OR59 compareds | Multi-Residue - 179 compounds |           | ntibal Solemts | Sisture & Water Activity |          | Root Yeat and Mold | fiques ExClair and Total Celfform | ada.       | su       |                        | Pro<br>Caston P<br>Report to | leporting:<br>State - 11 ME<br>sol Score 12 Sco<br>13 Score 12 Sco<br>13 Score 12 Score 13 S | Thit or |
| Lab<br>Client Sample Identification<br>1 01LIRVAP200 SP                                                                                       | Date                                                                                                                                                                                                                                           | Tree    | Pestidie | Perindo                  | Potenty                       | heribasi  | Molichure      | Terpones                 | Micros % | MIGNOLE.           | Peary Metals.                     | Mycotooins | Diffect  | Sample<br>Type *       | Weight<br>(Units)            | Comments/Metrc 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 2 01LIRVAP200_SP                                                                                                                              | -                                                                                                                                                                                                                                              |         | -        | -                        | 1x                            | -         | -              | -                        | -        | -                  | -                                 | -          | -        | č                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                               | _                                                                                                                                                                                                                                              | -       | -        | -                        | x                             | -         | -              | _                        | -        | -                  | -                                 | -          |          | ~                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 3 0107LIRVAP200_Uama                                                                                                                          |                                                                                                                                                                                                                                                |         |          |                          | -                             | -         |                | _                        |          |                    | _                                 |            |          | 2                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 4 0107LIRVAP200_OGK                                                                                                                           |                                                                                                                                                                                                                                                |         |          |                          | x                             |           |                |                          |          |                    |                                   |            |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 5 01020506LIRVAP200_                                                                                                                          | 10.00                                                                                                                                                                                                                                          |         |          |                          | x                             |           |                |                          |          |                    |                                   |            |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 6 01020506LIRVAP200_                                                                                                                          | FV                                                                                                                                                                                                                                             |         |          | 1                        | x                             |           |                |                          | 1        |                    |                                   |            |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 7 01LIR209_GJ                                                                                                                                 |                                                                                                                                                                                                                                                |         |          | x                        | х                             | х         |                |                          | X        |                    | x                                 | x          |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 8 01LIR209_SG                                                                                                                                 |                                                                                                                                                                                                                                                |         |          | x                        | x                             | x         |                |                          | х        |                    | х                                 | х          |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 9 01LIR209_Llama                                                                                                                              |                                                                                                                                                                                                                                                |         |          | x                        | ×                             | x         |                |                          | х        |                    | х                                 | х          |          | C                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 10 01LIR209_TG                                                                                                                                |                                                                                                                                                                                                                                                |         |          | x                        | x                             | x         |                |                          |          |                    | x                                 |            |          | C                      | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Heinquished Dy:                                                                                                                               | Date                                                                                                                                                                                                                                           | Time    |          | 1                        | 3                             | location: | Nr.            | -                        | -        | 0                  | dai                               | TR         | 18       |                        |                              | Lab Use Onlyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Kyle Farook                                                                                                                                   | 1/17                                                                                                                                                                                                                                           | 11:00 A |          | é                        | E                             | 5         | -              | 1                        |          | 1-in               | 13                                | 114        | 0        |                        |                              | es   Cl Ro - Temp (PC): 20, es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| - Ba-                                                                                                                                         | 1.17                                                                                                                                                                                                                                           | /338    |          | ę.                       | 35                            |           |                |                          |          | olt                | 10                                | ાવણ        | <b>b</b> | Simple in<br>[] Cech ] | good condition               | t: C) Yes  D Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |

1 - Sample Type Ender: Vagetation (V) ; Isolates (S) ; Estract/Cencentrate (C) ; Texture/Tepical (T) ; Edible (E) ; Reverage (U) Receptor as inclusion in Collardia Education with training requirements contained on opercontains with the exercist town of annex constant of with the COC. In Agoing "Arlingethed by " you are approag to determine

(he service was

12423 NE Whiteler Way Portland, OR 87288

P: (503) 254-1794 ( Part (503) 254-2492 (mission) and a second se

Page\_\_\_\_\_ef\_\_\_\_

www.columbialaboratories.com

Page 6 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

| J AOAC 2015 V98         |           |            |        |       | y Quality Co<br>B | atch ID: 23  |       |                          |       |
|-------------------------|-----------|------------|--------|-------|-------------------|--------------|-------|--------------------------|-------|
| aboratory Conti         | ol Sample |            |        |       |                   |              |       |                          |       |
| Analyte                 | LCS       | Result     | Spike  | Units | % Rec             | Lin          | nits  | Evaluation               | Notes |
| BDVA                    | 2         | 0.104      | 0.100  | %     | 104               | 80.0         | - 120 | Acceptable               |       |
| BDV                     | 2         | 0.110      | 0.106  | %     | 104               | 80.0         | - 120 | Acceptable               |       |
| BE                      | 2         | 0.108      | 0.105  | %     | 103               | 80.0         | - 120 | Acceptable               |       |
| BDA                     | 1         | 0.0968     | 0.096  | %     | 101               | 90.0         | - 110 | Acceptable               |       |
| BGA                     | 1         | 0.0973     | 0.096  | %     | 101               | 80.0         | - 120 | Acceptable               |       |
| BG                      | 1         | 0.100      | 0.099  | %     | 102               | 80.0         | - 120 | Acceptable               |       |
| :BD                     | 1         | 0.0969     | 0.097  | %     | 99.6              | 90.0         | - 110 | Acceptable               |       |
| HCV                     | 2         | 0.109      | 0.106  | %     | 102               | 80.0         | - 120 | Acceptable               |       |
| 8THCV                   | 2         | 0.108      | 0.103  | %     | 105               | 80.0         | - 120 | Acceptable               |       |
| HCVA                    | 2         | 0.102      | 0.099  | %     | 103               | 80.0         | - 120 | Acceptable               |       |
| BN                      | 1         | 0.104      | 0.102  | %     | 102               | 80.0         | - 120 | Acceptable               |       |
| xo-THC                  | 2         | 0.101      | 0.097  | %     | 104               | 80.0         | - 120 | Acceptable               |       |
| 19THC                   | 1         | 0.112      | 0.105  | %     | 107               |              | - 110 | Acceptable               |       |
| 8THC                    | 1         | 0.0971     | 0.100  | %     | 96.7              |              | - 110 | Acceptable               |       |
| BL                      | 2         | 0.108      | 0.104  | %     | 104               |              | - 120 | Acceptable               |       |
| S-HHC                   | 3         | 0.0995     | 0.100  | %     | 99.5              |              | - 120 | Acceptable               |       |
| 10THC                   | 1         | 0.0471     | 0.047  | %     | 99.8              |              | - 120 | Acceptable               |       |
| BC                      | 2         | 0.107      | 0.104  | %     | 103               |              | - 120 | Acceptable               |       |
| R-HHC                   | 3         | 0.0889     | 0.100  | %     | 88.9              |              | - 120 | Acceptable               |       |
| HCA                     | 1         | 0.0964     | 0.095  | %     | 101               |              | - 120 | Acceptable               |       |
| BCA                     | 2         | 0.106      | 0.103  | %     | 101               |              | - 120 | Acceptable               |       |
| BLA                     | 2         | 0.108      | 0.105  | %     | 103               |              | - 120 | Acceptable               |       |
| 8THCO                   | 3         | 0.108      | 0.100  | %     | 104               | 80.0         | - 120 | Acceptable               |       |
| BT                      | 2         | 0.104      | 0.105  | %     | 104               |              |       | Acceptable               |       |
| 9THCO                   | 3         | 0.109      | 0.100  | %     | 104               | 80.0<br>80.0 |       | Acceptable               |       |
| Aethod Blank            | 3         | 0.110      | 0.100  | 70    | 110               | 80.0         | - 120 | Acceptable               |       |
| nalyte                  | R         | esult      | LOQ    |       | Units             | Lin          | nits  | Evaluation               | Notes |
| BDVA                    |           | LOQ        | 0.0077 | 1     | %                 | < 0.0        |       | Acceptable               | Notes |
| BDV                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BE                      |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BDA                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BGA                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BGA                     |           | 100        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BD                      |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| HCV                     |           | 100        | 0.0077 | +     | %                 | < 0.0        |       | Acceptable               |       |
| ISTHCV                  |           | LOQ<br>LOQ | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| HCVA                    |           | LOQ<br>LOQ | 0.0077 | ļ     | %                 | < 0.0        |       |                          |       |
| BN                      |           | LOQ<br>LOQ | 0.0077 | ļ     | %                 | < 0.0        |       | Acceptable<br>Acceptable |       |
| .BN                     |           | LOQ<br>LOQ | 0.0077 | ļ     | %                 | < 0.0        |       | Acceptable               |       |
|                         |           |            |        | ļ     |                   |              |       |                          |       |
| 9THC                    |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| 8THC                    |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BL                      |           | LOQ        | 0.0077 |       |                   | < 0.0        |       | Acceptable               |       |
| S-HHC                   |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| 10THC                   |           | LOQ        | 0.0077 | 1     | %                 | < 0.0        |       | Acceptable               |       |
| BC                      |           | LOQ        | 0.0077 | ļ     | %                 |              | 0077  | Acceptable               |       |
| R-HHC                   |           | LOQ        | 0.0077 | %     |                   | < 0.0        |       | Acceptable               |       |
| HCA                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BCA                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
| BLA                     |           | LOQ        | 0.0077 |       | %                 | < 0.0        |       | Acceptable               |       |
|                         |           | LOQ        | 0.0077 | 1 -   | %                 |              | 0077  | Acceptable               |       |
| 18THCO                  |           |            |        |       |                   |              |       |                          |       |
| ISTHCO<br>CBT<br>ISTHCO | <         |            | 0.0077 |       | %                 | < 0.0        |       | Acceptable<br>Acceptable |       |

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

Units of Measure: % - Percent

Page 7 of 12 www.columbialaboratories.com Page 7 of 12 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

Revision: 1 Document ID: 7148 Legacy ID: Worksheet Validated 04/20/2021

| J AOAC 2015 V98-6 |                                                                                                                                |                                                                                                    |       |       | Bat   | tch ID: 2300680 |            |       |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|-------|-------|-----------------|------------|-------|--|--|--|
| Sample Duplicate  | Sample ID: 23-000673-0001                                                                                                      |                                                                                                    |       |       |       |                 |            |       |  |  |  |
| Analyte           | Result                                                                                                                         | Org. Result                                                                                        | LOQ   | Units | RPD   | Limits          | Evaluation | Notes |  |  |  |
| CBDVA             | 0.0236                                                                                                                         | 0.0235                                                                                             | 0.077 | %     | 0.271 | < 20            | Acceptable |       |  |  |  |
| CBDV              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBE               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBDA              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBGA              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBG               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBD               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| THCV              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| d8THCV            | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| THCVA             | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBN               | 0.0340                                                                                                                         | 0.0342                                                                                             | 0.077 | %     | 0.526 | < 20            | Acceptable |       |  |  |  |
| exo-THC           | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| d9THC             | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| d8THC             | 0.189                                                                                                                          | 0.172                                                                                              | 0.077 | %     | 9.34  | < 20            | Acceptable |       |  |  |  |
| CBL               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| 9S-HHC            | 39.6                                                                                                                           | 38.5                                                                                               | 0.077 | %     | 2.70  | < 20            | Acceptable |       |  |  |  |
| d10THC            | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBC               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| 9R-HHC            | 36.9                                                                                                                           | 35.2                                                                                               | 0.077 | %     | 4.96  | < 20            | Acceptable |       |  |  |  |
| THCA              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBCA              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBLA              | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| d8THCO            | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| CBT               | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |
| d9THCO            | <loq< td=""><td><loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<></td></loq<> | <loq< td=""><td>0.077</td><td>%</td><td>NA</td><td>&lt; 20</td><td>Acceptable</td><td></td></loq<> | 0.077 | %     | NA    | < 20            | Acceptable |       |  |  |  |

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

R2 - Sample replicates RPD non-calculable, as only one replicate is within analytical range.

Units of Measure:

Page 8 of 12
<u>www.columbialaboratories.com</u>
Page 8 of 12
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Test results retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

Revision: 2 Document ID: 7087 Legacy ID: CFL-E33Effective:

|                       | Lab      | orator | v Oual    | ity Contro | ol Results  |               |              | Leyacy        | ID.      | OFL    | -E33Effective: |
|-----------------------|----------|--------|-----------|------------|-------------|---------------|--------------|---------------|----------|--------|----------------|
| Residual Solvents     |          | orator | , quai    | ,          | J. Hesuits  | Bat           | ch ID:       | 230072        | 22       |        |                |
| Method Blank          |          |        |           |            | Laborato    | ry Control Sa | amnla        |               |          |        |                |
| Analyte               | Result   |        | LOQ       | Notes      | Result      | Spike         | Units        | % Rec         |          | imits. | Notes          |
| Propane               | ND       | <      | 200       | Hotes      | 480         | 572           | μg/g         | 83.9          |          | - 12   |                |
| Isobutane             | ND       | <      | 200       |            | 623         | 731           | не/с<br>нд/д | 85.2          | 60       | - 12   |                |
| Butane                | ND       | <      | 200       |            | 592         | 731           | μg/g         | 81.0          |          | - 12   |                |
| 2,2-Dimethylpropane   | ND       | <      | 200       |            | 812         | 936           | не/с<br>нд/д | 86.8          |          |        | 20             |
| Methanol              | ND       | ż      | 200       |            | 1410        | 1620          | нв/в<br>µg/g | 87.0          |          |        | 20             |
| Ethylene Oxide        | ND       | <      | 30        |            | 49          | 56.2          | μg/g         | 87.2          | 60       |        | 20             |
| 2-Methylbutane        | ND       | <      | 200       |            | 1330        | 1610          | μg/g         | 82.6          |          | - 12   |                |
| Pentane               | ND       | <      | 200       |            | 1330        | 1600          | μg/g         | 83.1          | 60       | - 13   |                |
| Ethanol               | ND       | <      | 200       |            | 1400        | 1610          | μg/g         | 87.0          |          | - 13   |                |
| thyl Ether            | ND       | <      | 200       |            | 1340        | 1630          | μg/g         | 82.2          | 60       | - 12   |                |
| 2,2-Dimethylbutane    | ND       | <      | 30        |            | 138         | 171           | μg/g         | 80.7          | 60       | - 12   | 20             |
| Acetone               | ND       | <      | 200       |            | 1340        | 1630          | μg/g         | 82.2          | 60       | - 12   |                |
| 2-Propanol            | ND       | <      | 200       |            | 1440        | 1620          | μg/g         | 88.9          | 60       |        | 20             |
| Ethyl Formate         | ND       | <      | 500       |            | 1380        | 1670          | μg/g         | 82.6          |          | - 13   |                |
| Acetonitrile          | ND       | <      | 100       |            | 409         | 498           | μg/g         | 82.1          |          | - 12   |                |
| Methyl Acetate        | ND       | <      | 500       |            | 1460        | 1730          | μg/g         | 84.4          |          | - 13   |                |
| 2,3-Dimethylbutane    | ND       | <      | 30        |            | 135         | 171           | μg/g         | 78.9          | 60       | - 12   | 20             |
| Dichloromethane       | ND       | <      | 60        |            | 406         | 483           | μg/g         | 84.1          | 60       | - 12   |                |
| 2-Methylpentane       | ND       | <      | 30        |            | 146         | 168           | μg/g         | 86.9          | 60       | - 12   |                |
| MTBE                  | ND       | <      | 500       |            | 1520        | 1650          | μg/g         | 92.1          | 70       | - 13   |                |
| 3-Methylpentane       | ND       | <      | 30        |            | 125         | 167           | μg/g         | 74.9          | 60       | - 12   | 20             |
| Hexane                | ND       | <      | 30        |            | 178         | 182           | µg/g         | 97.8          | 60       | - 12   | 20             |
| 1-Propanol            | ND       | <      | 500       |            | 1420        | 1620          | µg/g         | 87.7          | 70       | - 13   | 30             |
| Vethylethylketone     | ND       | <      | 500       |            | 1330        | 1620          | µg/g         | 82.1          | 70       | - 13   | 30             |
| Ethyl acetate         | ND       | <      | 200       |            | 1360        | 1610          | µg/g         | 84.5          | 60       | - 12   | 20             |
| 2-Butanol             | ND       | <      | 200       |            | 1430        | 1600          | µg/g         | 89.4          | 60       | - 12   | 20             |
| Tetrahydrofuran       | ND       | <      | 100       |            | 397         | 483           | µg/g         | 82.2          | 60       | - 12   | 20             |
| Cyclohexane           | ND       | <      | 200       |            | 1300        | 1610          | µg/g         | 80.7          | 60       | - 12   | 20             |
| 2-methyl-1-propanol   | ND       | <      | 500       |            | 1360        | 1620          | µg/g         | 84.0          | 70       | - 13   | 30             |
| Benzene               | ND       | <      | 1         |            | 4.42        | 5.02          | µg/g         | 88.0          | 60       | - 12   | 20             |
| sopropyl Acetate      | ND       | <      | 200       |            | 1450        | 1620          | µg/g         | 89.5          | 60       | - 12   | 20             |
| Heptane               | ND       | <      | 200       |            | 1280        | 1610          | µg/g         | 79.5          | 60       | - 12   | 20             |
| 1-Butanol             | ND       | <      | 500       |            | 1450        | 1630          | µg/g         | 89.0          | 70       | - 13   | 30             |
| Propyl Acetate        | ND       | <      | 500       |            | 1310        | 1610          | μg/g         | 81.4          | 70       | - 13   | 30             |
| 1,4-Dioxane           | ND       | <      | 100       |            | 390         | 491           | μg/g         | 79.4          | 60       | - 12   | 20             |
| 2-Ethoxyethanol       | ND       | <      | 30        |            | 296         | 181           | μg/g         | 163.5         | 60       | - 12   | 20 Q1          |
| Methylisobutylketone  | ND       | <      | 500       |            | 1260        | 1620          | µg/g         | 77.8          | 70       | - 13   |                |
| 3-Methyl-1-butanol    | ND       | <      | 500       |            | 1380        | 1630          | µg/g         | 84.7          | 70       | - 13   |                |
| Ethylene Glycol       | ND       | <      | 200       |            | 652         | 484           | µg/g         | 134.7         | 60       |        | 20 Q1          |
| Toluene               | ND       | <      | 100       |            | 373         | 485           | µg/g         | 76.9          | 60       | - 12   |                |
| sobutyl Acetate       | ND       | <      | 500       |            | 1320        | 1630          | µg/g         | 81.0          | 70       |        | 30             |
| L-Pentanol            | ND       | <      | 500       |            | 1330        | 1620          | µg/g         | 82.1          | 70       | - 13   |                |
| Butyl Acetate         | ND       | <      | 500       |            | 1280        | 1620          | µg/g         | 79.0          |          | - 13   |                |
| Ethylbenzene          | ND       | <      | 200       |            | 712         | 969           | µg/g         | 73.5          | 60       | - 12   |                |
| n,p-Xylene            | ND       | <      | 200       |            | 720         | 994           | µg/g         | 72.4          | 60       | - 12   |                |
| o-Xylene              | ND       | <      | 200       |            | 694         | 967           | µg/g         | 71.8          | 60       |        | 20             |
| Cumene                | ND       | <      | 30        |            | 126         | 171           | µg/g         | 73.7          | 60       |        | 20             |
| Anisole               | ND       | <      | 500       |            | 1120        | 1630          | µg/g         | 68.7          | 70       |        | 30 Q6          |
| DMSO                  | ND       | <      | 500       |            | 2220        | 1680          | µg/g         | 132.1         |          |        | 30 Q1          |
| .,2-dimethoxyethane   | ND       |        | 50<br>500 |            | 147<br>1340 | 169           | µg/g         | 87.0          |          | - 13   |                |
| riethylamine          | ND       | <      |           |            |             | 1630          | µg/g         | 82.2          | 70       |        |                |
| N,N-dimethylformamide | ND       | <      | 150       |            | 573         | 482           | µg/g         | 118.9         |          | - 13   |                |
| N,N-dimethylacetamide | ND       | <      | 150       |            | 533         | 510           | µg/g         | 104.5         | 70       |        | 30             |
| Pyridine              | ND       |        | 50<br>50  |            | 194<br>198  | 203           | µg/g         | 95.6<br>115.1 | 70       |        | 30             |
| Sulfolane             | ND       | <      |           |            |             | 172           | µg/g         |               | 70       |        | 30             |
| 1,2-Dichloroethane    | ND       | <      | 1         |            | 0.857       | 1             | µg/g         | 85.7          | 70       | - 13   |                |
| Chloroform            | ND<br>ND | <      | 1         |            | 0.892       | 1             | µg/g         | 89.2<br>93.0  | 70<br>70 | - 13   |                |
| Frichloroethylene     |          |        | 1         |            |             | -             | µg/g         |               |          |        |                |
| 1,1-Dichloroethane    | ND       | <      | 1         |            | 0.899       | 1             | µg/g         | 89.9          | 70       | - 13   | 50             |

Page 9 of 12

 Www.columbialaboratories.com
 Page 9 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430





Revision: 2 Document ID: 7087

| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |

| Analyte         Neuth Org. Result         LOQ         Units         PD         Units         Acceptable           bobutane         ND         ND         200         ufgr         0.0         < 20         Acceptable           bobutane         ND         ND         200         ufgr         0.0         < 20         Acceptable           2.2.0methylorgane         ND         ND         200         Upgr         0.0         < 20         Acceptable           2.2.0methylorgane         ND         ND         230         Upgr         0.0         < 20         Acceptable           Verthylorgane         ND         ND         230         Upgr         0.0         < 20         Acceptable           Verthylorgane         ND         ND         230         Upgr         0.0         < 20         Acceptable           Verthylordane         ND         ND         230         Upgr         0.0         < 20         Acceptable           Verthylordane         ND         ND         230         Upgr         0.0         < 20         Acceptable           Verthylordane         ND         ND         230         Upgr         0.0         < 20         Acceptable                                                                            | QC - Sample Duplicate |        |             |     |       |     | Sample ID | Legacy<br>: 23-000158-0002 | ID: CFL-E33Effective: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-------------|-----|-------|-----|-----------|----------------------------|-----------------------|
| Propane         ND         200         µµµ (x)         0.0         < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Result | Org. Result | 100 | Units | RPD |           |                            | Notes                 |
| Sobutane         ND         ND         200         lig/g         0.0         < 2.0         Acceptable           2.2.0methylpropane         ND         ND         200         lig/g         0.0         < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        |             |     |       |     |           |                            | Hotes                 |
| Butane         ND         ND         200         µµµ         0.0         < 200         µµµ         0.0         200         µµ         0.                                            |                       | ND     |             |     |       |     |           |                            |                       |
| 2,2.0methylpropane         ND         ND         200         µJ/2         0.0         < 30         Acceptable           Ethylene Oxide         ND         ND         30         µJ/2         0.0         < 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |        |             |     |       |     |           |                            |                       |
| Wethan         ND         ND         ND         ND         ND         ND         ND           2-Methylburane         ND                                                                                                       |                       |        |             |     |       |     |           |                            |                       |
| Ethylenc Oxide         ND         ND         ND         ND         ND         ND           Ventaria         ND         ND         ND         200         µµµ         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |             |     |       |     |           |                            |                       |
| Print         ND         ND         ND         ND         ND         ND           Ethanol         ND         ND         ND         200         µµµµ         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        |             |     |       |     |           |                            |                       |
| Pertane         ND         ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>        |                       |        |             |     |       |     |           |                            |                       |
| Ethanol         ND         ND <t< td=""><td></td><td>ND</td><td>ND</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td></t<> |                       | ND     | ND          |     |       | 0.0 |           |                            |                       |
| Ethyl Ether         ND                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| 2.2-Dimethylbutane         ND                                                                                              |                       | ND     | ND          |     |       |     |           |                            |                       |
| Accesse         ND         ND         ND         200         µg/g         0.0         < 20         Acceptable           Ethy Formate         ND         ND         ND         100         4/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| 2-Proganol         ND         ND         ND         S200         µg/g         0.0         < 20         Acceptable           Accetontrile         ND         ND         ND         100         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |             |     |       |     |           |                            |                       |
| Ethyl Formate         ND                                                                                                   |                       |        |             |     |       |     |           |                            |                       |
| Acctonicile         ND         ND         100 $\mu d/g$ 0.0         < 20         Acceptable           23-Dimethylbutane         ND         ND         130 $\mu d/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |        |             |     |       |     |           |                            |                       |
| Methyl Acetate         ND         ND         SOO         #2/g         0.0         < 20         Acceptable           2-Dinethylbure         ND         ND         ND         ND         SO         #2/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             |     |       |     |           |                            |                       |
| 32-Dimethylbutane         ND         ND         ND         ND         Kole           23-Dimethylbutane         ND         ND         ND         Kole         Acceptable           2-Methylpentane         ND         ND         S0         µµ/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |             |     |       |     |           |                            | 1                     |
| Dichformethane         ND         ND         Kol         Hy/s         0.0         < 20         Acceptable           Avdettylpentane         ND         ND         ND         MS         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |             |     |       |     |           |                            | 1                     |
| PAthethylpentane         ND         ND         30         jug/g         0.0         < 20         Acceptable           3-Methylpentane         ND         ND         30         jug/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |        |             |     |       |     |           |                            | 1                     |
| WTBE         ND         ND         S00         µµ/k         0.0         < 20         Acceptable           3-Methylpentane         ND         ND         ND         Methylpentane         ND         ND         ND         S0         µµ/k         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |        |             |     |       |     |           |                            | 1                     |
| 3-Methylpentane         ND         ND         30         µg/g         0.0         < 20         Acceptable           Hexane         ND         ND         ND         30         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        |             |     |       |     |           |                            | 1                     |
| Hexan         ND         ND         30         µg/g         0.0         < 20         Acceptable           Jeropanol         ND         ND         500         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |             |     |       |     |           |                            | 1                     |
| i-Propanol         ND         ND         SO0         µg/g         0.0         < 20         Acceptable           Methylethylketone         ND         ND         SO0         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |             |     |       |     |           |                            |                       |
| Methylketone         ND         ND         SO0         µg/g         0.0         < 20         Acceptable           2-Butanol         ND         ND         200         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |             |     |       |     |           |                            |                       |
| Ethyl actate         ND         ND         200 $\mu_g/R$ 0.0         < 200         Acceptable           2-Butanol         ND         ND         ND         200 $\mu_g/R$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |             |     |       |     |           |                            |                       |
| 2-Butanol         ND         ND         200         μg/g         0.0         < 20         Acceptable           fetrahydrofuran         ND         ND         100         μg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| Terrahydrfuran         ND         ND         100         µg/g         0.0         < 200         Acceptable           Cyclohexane         ND         ND         200         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |             |     |       |     |           |                            |                       |
| Cyclohexane         ND         ND         200 $\mu g/g$ 0.0         < 20         Acceptable           2-methyl-1-propanol         ND         ND         ND         500 $\mu g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |             |     |       |     |           |                            |                       |
| Prethyl-I-propanol         ND         ND         SOD         µg/g         0.0         < 20         Acceptable           Benzene         ND         ND         1         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |             |     |       |     |           |                            |                       |
| Benzen         ND         ND         1 $\mu_g/r_g$ 0.0         < 20         Acceptable           sopropyl Acetate         ND         ND         200 $\mu_g/r_g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |        |             |     |       |     |           |                            |                       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |             | 300 |       |     |           |                            | -                     |
| Heptane         ND         ND         ND         200 $\mu_g/r_g$ 0.0         < 20         Acceptable           1-Butanol         ND         ND         500 $\mu_g/r_g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             | 200 |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| Propyl Actate         ND         ND         SOI $\mu g/g$ 0.0         < 20         Acceptable           1,4-Dioxane         ND         ND         100 $\mu g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |        |             |     |       |     |           |                            |                       |
| I.4.Discane         ND         ND         IO $\mu_g^2/g$ 0.0         < 20         Acceptable           2-Ethoxyethanol         ND         ND         30 $\mu_g^2/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |        |             |     |       |     |           |                            | -                     |
| 2-Ethoxyethanol         ND         ND         30 $\mu g/g$ 0.0         < 20         Acceptable           Methyliobutylketone         ND         ND         500 $\mu g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |             |     |       |     |           |                            |                       |
| Methyliceboutylketone         ND         ND         SOI $\mu_g/g$ 0.0         < 20         Acceptable           3-Methyl-1-butanol         ND         ND         SOI $\mu_g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             |     |       |     |           |                            |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| Ethylene Glycol         ND         ND         200 $\mu_g/g$ 0.0         < 20         Acceptable           Ioluene         ND         ND         100 $\mu_g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |        |             |     |       |     |           |                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             |     |       |     |           |                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             |     |       |     |           |                            |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| Butyl Acetate         ND         ND         SOO $\mu g/g$ 0.0         < 20         Acceptable           Ethylbenzene         ND         ND         200 $\mu g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |             |     |       |     |           |                            |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| m,p-Sylene         ND         ND         200 $\mu g/g$ 0.0         < 20         Acceptable           o-Xylene         ND         ND         200 $\mu g/g$ 0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |             |     |       |     |           |                            |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| Sulfolane         ND         ND         S0         μg/g         0.0         < 20         Acceptable           1,2-Dichloroethane         ND         ND         1         μg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |             |     |       |     |           |                            |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |        |             |     |       |     |           |                            |                       |
| Chloroform         ND         ND         1         µg/g         0.0         < 20         Acceptable           Trichloroethylene         ND         ND         1         µg/g         0.0         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |             |     |       |     |           |                            |                       |
| Trichloroethylene         ND         1         μg/g         0.0         < 20         Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             | 1   |       |     |           |                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |             | 1   |       |     |           |                            |                       |
| 1,1-Dichioroethane ND ND 1 μg/g 0.0 < 20 Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |             |     |       |     |           |                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethane    | ND     | ND          | 1   | µg/g  | 0.0 | < 20      | Acceptable                 |                       |

#### Abbreviations

ND - None Detected at or above MRL

#### Units of Measure: µg/g- Microgram per gram or ppm

RPD - Relative Percent Difference LOQ - Limit of Quantitation

Q1 - Quality control result biased high. Only non-detect samples reported. Q6 - Quality control outside QC limits. Data acceptable based on remaining QC.

Page 10 of 12 www.columbialaboratories.com Page 10 of 12 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.





| Report Number:  | 23-000691/D005.R000 |
|-----------------|---------------------|
| Report Date:    | 01/24/2023          |
| ORELAP#:        | OR100028            |
| Purchase Order: |                     |
| Received:       | 01/17/23 14:16      |



Page 11 of 12

 Www.columbialaboratories.com
 Page 11 of 12

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

 Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430





**Report Number:** 23-000691/D005.R000 **Report Date:** 01/24/2023 **ORELAP#:** OR100028 **Purchase Order:** 01/17/23 14:16 **Received:** 

#### Explanation of QC Flag Comments:

| Code | Explanation                                                                                 |
|------|---------------------------------------------------------------------------------------------|
| Q    | Matrix interferences affecting spike or surrogate recoveries.                               |
| Q1   | Quality control result biased high. Only non-detect samples reported.                       |
| Q2   | Quality control outside QC limits. Data considered estimate.                                |
| Q3   | Sample concentration greater than four times the amount spiked.                             |
| Q4   | Non-homogenous sample matrix, affecting RPD result and/or % recoveries.                     |
| Q5   | Spike results above calibration curve.                                                      |
| Q6   | Quality control outside QC limits. Data acceptable based on remaining QC.                   |
| R    | Relative percent difference (RPD) outside control limit.                                    |
| R1   | RPD non-calculable, as sample or duplicate results are less than five times the LOQ.        |
| R2   | Sample replicates RPD non-calculable, as only one replicate is within the analytical range. |
| LOQ1 | Quantitation level raised due to low sample volume and/or dilution.                         |
| LOQ2 | Quantitaion level raised due to matrix interference.                                        |
| В    | Analyte detected in method blank, but not in associated samples.                            |
| B1   | The sample concentration is greater than 5 times the blank concentration.                   |
| B2   | The sample concentration is less than 5 times the blank concentration.                      |

www.columbialaboratories.com

Page 12 of 12

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390 OAR 333-007-0400 OAR 333-007-0410 OAR 333-007-0430